Challenges for the Planning and Conduct of Diagnostic Studies With Molecular Biomarkers

Andreas Ziegler

ziegler@imbs.uni-luebeck.de

Institut für Medizinische Biometrie und Statistik Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein

Berlin, 10.09.2013

Outline

- - Levels of Evidence
 - Important principles in study design
 - Important sources of bias
 - Quality of diagnostic studies
 - Example: HIV, malaria, tuberculosis
 - Findings from systematic reviews
 - Verification bias
 - Reasons for selection bias
 - Software patents

Levels of Evidence in Diagnostic Studies (GBA)

Level	Criteria
la	Systematic reviews of studies with evidence level I b
Ιb	Randomized controlled trials
I c	Other intervention studies
II a	Systematic reviews of diagnostic accuracy studies with evidence level II b
II b	Cross-sectional or cohort study enabling the estimation of measures on diagnostic accuracy (sensitivity, specificity, likelihood ratios, positive and negative predictive value)
III	Other studies enabling the estimation of measures on diagnostic accuracy (sensitivity, specificity, likelihood ratios)
IV	Associations, pathophysiological reflections, descriptive presentations, case reports, and similar; expert opinions not proven by studies, reports of expert committees and consensus conferences

Important Methodological Principles of Diagnostic Accuracy Studies

Principle	Explanation
Two groups of patients	Patients with the disease for estimating sensitivity; group of subjects without disease for estimating specificity
Well-defined patient samples	Independent of ascertainment scheme: description of patient characteristics (e.g., age, gender, disease stage, comorbidities)
Well-defined diagnostic test	Clear definition of diagnostic test Application to all study participants in identical way
Gold standard / reference standard	Determination of true disease status of all study participants by perfect standard or best standard available
Sample of raters	If test requires trained raters, two or more raters required
Blinded investigation	Independent and blind assessment of reference standard and diagnostic test
Standardized reporting of results	Report according to STARD statement, QUADAS, QUADOMICS

Important Sources of Bias in Studies on Diagnostic Accuracy

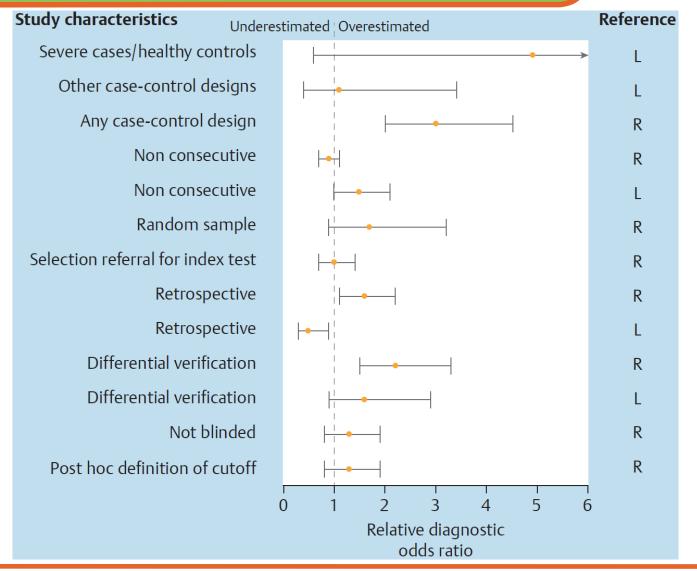
Bias	Explanation
Spectrum composition bias	Spectrum of patients not representative of the patients who will receive the test in practice
Disease progression bias	Time period between reference standard and index test so long that target condition might have changed
Partial verification bias	Reference standard not applied to all patients
Differential verification bias	Use of different reference standards, use depending on test result
Incorporation bias	Reference standard and index test not independent; special case: Index test part of reference standard
Test review bias	Index test results interpreted with knowledge of results of reference standard
Reference standard review bias	Reference standard results interpreted with knowledge of results of index test
Clinical review bias	Index test interpreted in the light of clinical data that would not be available when test used in practice

Quality of Diagnostic Studies Example: Tuberculosis, HIV, Malaria

Inclusion criteria

- Commercially available test kit
- Tuberculosis, HIV, malaria
- Original publication
- Reporting of
 - Methods
 - Sensitivity
 - Specifity
- Publications 2004 2006
- Languages: English, French, Spanish, Portuguese

Quality of Diagnostic Studies Example: Tuberculosis, HIV, Malaria



- 238 articles fulfilled inclusion criteria
- ALL studies with design issues
- 10% of studies with adequate description of reference standard
- 19% without index test observation bias
- 24% without reference standard observation bias
- < 25% of studies with 9 STARD indicators</p>
 - 0% reported methods for calculation and estimation of reproducibility
 - 14% reported number of eligible subjects not included
 - 16% with blinded observer

Quality of Diagnostic Studies Design dependent bias

Quality of Diagnostic Studies Design dependent bias

- "We found that studies that used retrospective data collection or that routinely collected clinical data were associated with an overestimation of the DOR by 60%."
- "Case-control studies had much higher estimates of diagnostic accuracy ..."
- "Verification is a key issue in any diagnostic accuracy study. Studies that relied on 2 or more reference standards to verify the results of the index test reported odds ratios that were on average 60% higher than the odds ratios in studies that used a single reference standard."

Verification Bias: Example

- Study population: 6691 patients with suspected prostate cancer
- Index test: PSA (4.1ng/ml)
- Reference standard: biopsy
- 705 patients PSA + biopsy

Age	< 60 year	≥ 60 years
Sensitivity:	43%	35%
Specifity:	77%	88%

5986 patients only PSA (correction by Begg-Greenes)

Age	< 60 years	≥ 60 years
Adjusted sensitivity	18%	19%
Adjusted specifity	98%	94%

Recommendation: decrease PSA threshold for biopsy

Verification Bias: Explanation

Synonymous: work-up bias, referral bias

	Reference	standard
Index test	Positive	Negative
Positive	80 a	₁₀ b
Negative	20 c	₄₀ d

Naïve correction for verification bias

	Reference standard		
Index test	Positive	Negative	
Positive	80 a	₁₀ b	
Negative	20 + 60 = 80^C	40 + 120 = 160 ^d	

$$sens = \frac{a}{a+c} = \frac{80}{100} = 80\%$$

$$spec = \frac{d}{b+d} = \frac{40}{50} = 80\%$$

$$sens = \frac{a}{a+c} = \frac{80}{160} = 50\%$$

$$spec = \frac{d}{b+d} = \frac{160}{170} = 94.11\%$$

Reasons for Selection Bias

- Hypernormal controls
- Severe cases (selection for symptoms)
- Differences in ascertainment of patients (patient spectrum in emergency room compared to day clinic)
- Referral for index test bias: inclusion into study depending on index test result
- Loss to follow-up bias: healthy study participants missing at follow-up visits
- Participation bias (selection-bias): selected part of subjects participates in study
- Limited challenge bias: only inclusion in presence of previous test(s)
- Increased challenge bias: only inclusion in presence of specific diagnosis
- Study examination bias: only inclusion if kept up at specific investigation or if specific investigation possible

Phases of Diagnostic Biomarker Studies

Phase	Description	Aim of study
I a	Discovery	Identification of promising biomarkers
Ιb	Assay development, assay validation	Define and optimize analytical process into robust, reproducible, and valid device
I c	Retrospective validation	Clinical assay detects disease; development of first algorithm for combination test
II	Retrospective refinement	Validation of early detection properties of biomarker (set); development and/or refinement of algorithm(s) for combination tests
Ш	Prospective investigation	Determination of diagnostic accuracy (sensitivity, specificity) in the situation of clinical routine
IV a	Randomized controlled trial	Quantification of effect of making the biomarker information available to the doctor to reduce disease burden
IV b	Health economics study	Quantification of cost-effectiveness

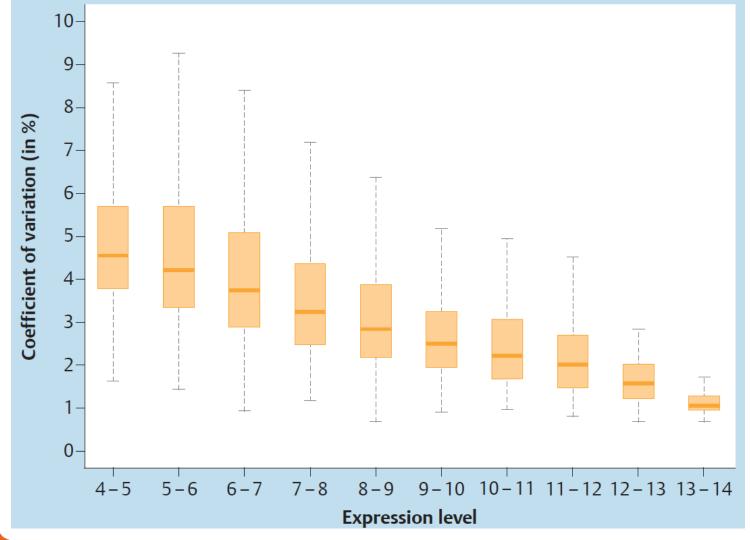
Effect of Precision Sample Size

Simplified standard sample size formula

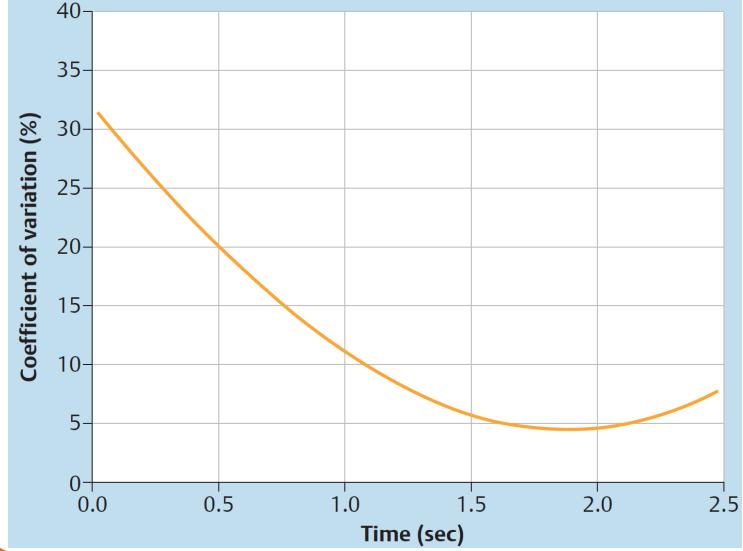
$$n=2\cdot 10\cdot rac{1}{\Delta^2}$$
 Simplification for α = 0.05, β = 0.2: $10pprox (z_{1-lpha/2}+z_{1-eta})^2$

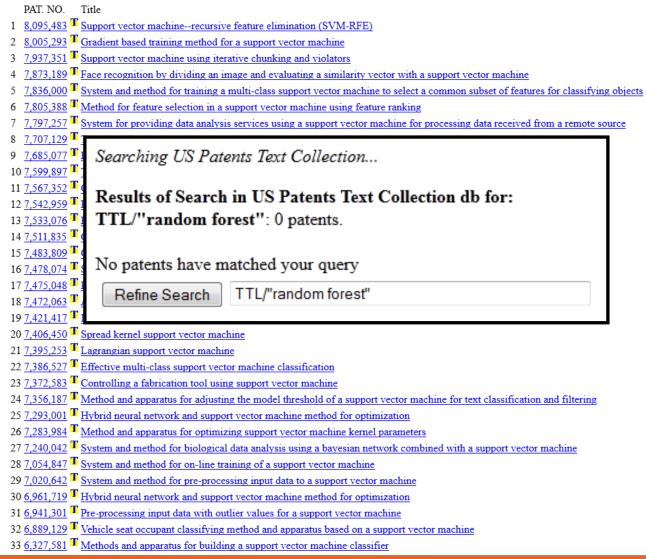
- Sample size formula for coefficient of variation
 - ullet Fold change f example: f=2 $\mu_2/\mu_1=2$ \Rightarrow $\mu_2=2\cdot\mu_1$
 - Coefficient of variation (relative variability) $cv = \sigma/\mu$

$$n = 2 \cdot 10 \cdot \frac{1}{\Delta^2} = 2 \cdot 10 \cdot \frac{v^2}{(1-f)^2}$$


Squared increasey of sample size with coefficient of variation

Effect of Precision




Effect of Precision Example: HPLC

Note on Software Patents

Summary

- Most important sources of bias
 - Inappropriate selection of subjects (cases / controls)
 - Verification bias
 - Different reference standard
 - Reference standard only in portion of patients
- Overestimation of diagnostic accuracy in case of inappropriate study design
- Validation challenging
- Coefficient of variation of assay important
- Multimarker rules need attention
- Be aware of software patents!

