

VibrioNet:

Vibrio-Infektionen durch Lebensmittel und Meerwasser in Zeiten des Klimawandels

Eckhard Strauch

Vibrionen - Übersicht

Gramnegative aquatische Bakterien Ubiquitär verbreitet in marinen Ökosystemen Sediment, freies Wasser, assoziiert mit aquatischen Organismen

Pathogenität

Gastrointestinale Infektionen (Durchfallerkrankungen, Septikämie) Extraintestinale Infektionen (Wundinfektionen)

Bedeutendste humanpathogene Erreger

Vibrio cholerae O1, O139 (ctx+, tcp+)
Vibrio cholerae non-O1, non-O139
Vibrio parahaemolyticus (tdh, trh pos.)
Vibrio vulnificus
Vibrio alginolyticus

Klimawandel

Erwärmung des Oberflächenwassers → Zunahme der Vibrionenkonzentration

Warum VibrioNet?

Hypothesen:

Zunahme der Infektionen mit Vibrionen durch globale Erwärmung insbesondere gemäßigte Klimazonen mit stark schwankenden Wassertemperaturen

Anstieg des Risikos der *Vibrio*-Infektionen durch epidemiologische Faktoren

Zunahme des Handels und Verzehrs von Fischereiprodukten und Meeresfrüchten Demographischer Wandel der Bevölkerung

Unterschätzung der Bedeutung von Vibrio-Infektionen

Fehlen von Meldesystemen für Nicht-Cholera Vibrio-Erkrankungen in D und EU

Forschungsverbund VibrioNet

Förderphase Nov. 2010 - 2013

Humanmedizin

Florian Gunzer, Medizinische Mikrobiologie, Technische Universität Dresden

Veterinärmedizin

Thomas Alter, Institut für Lebensmittelhygiene, *Freie Universität Berlin* Edda Bartelt, *LAVES*, Institut für Fisch und Fischereiprodukte, Cuxhaven

Lebensmittelmikrobiologie

Eckhard Strauch, Bundesinstitut für Risikobewertung, Berlin

Epidemiologie

Christina Frank, *Robert Koch-Institut*, Berlin

Ökologie

Gunnar Gerdts, Alfred-Wegener-Institut, Helgoland

Biotechnologie

Boris Oberheitmann, *Q-Bioanalytic*, Bremerhaven

VibrioNet - Netzwerk

Ökologie Surveillance Epidemiologie

Nord- & Ostsee Wasser, Sediment, Plankton

AWI

Primärproduktion Muschelbänke

IFF

Handelsware aus dem Einzelhandel

FUB

Epidemiologische Untersuchungen

RKI

Stuhlproben von Patienten mit Diarrhoe

TUD

Pathogenität

Pathogenitätspotential

Molekulare Anpassung

BfR, FUB, TUD

Microarray

Genomsequenzierung

TUD

Diagnostik Typisierung

Robuste kosteneffektive Detektion

QBC

BfR

PCR, qualitative und quantitativ

FUB

Massenspektrometrie

AWI, BfR

Informationsaustausch

Internationale Partner

VibrioNet – Internationale Partner

Bangladesh

Shah Faruque, International Center for Diarrhoeal Disease Research, Dhaka

Chile

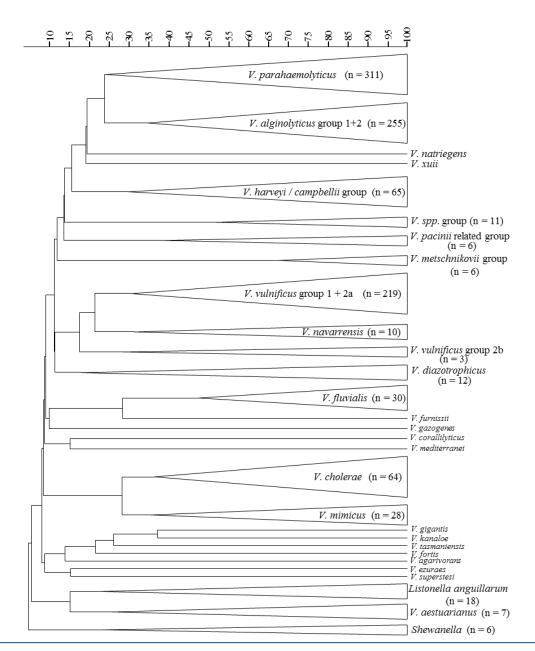
Romilio Espejo, Institute of Nutrition and Food Technology, Universidad de Chile

Indien

Samir Damare, N. Ramaiah, National Institute of Oceanography, Goa

Thailand

Duangporn Pichpol, Department of Veterinary Public Health, Chiang Mai University


Vietnam

Nguyen Huu Huan, Institute of Oceanography, Nha Trang

Vibrio spp. in deutschen Küstengewässern

MALDI-TOF (VibrioBase Datenbank)

FS Heincke

Probenahmestellen für Vibrio spp.

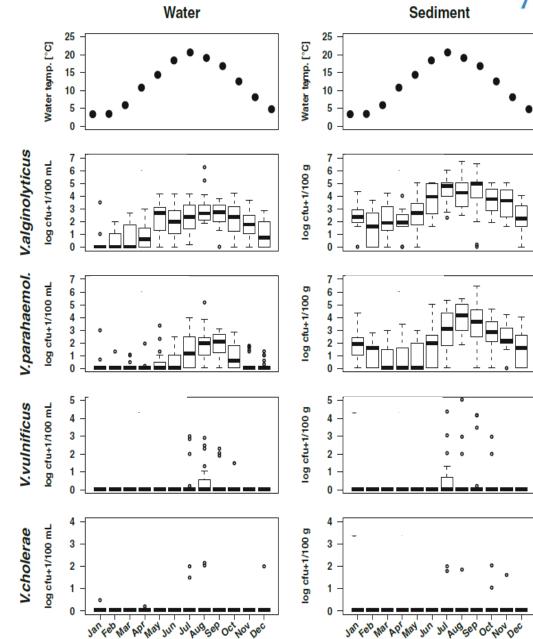
Erler et al. in Bearb.

KLIWAS

Vibrio spp. in Badegewässern von Nord- und Ostsee

Nordsee: KLIWAS BfG, NLGA Aurich in Kooperation mit AWI

Ostsee: KLIWAS

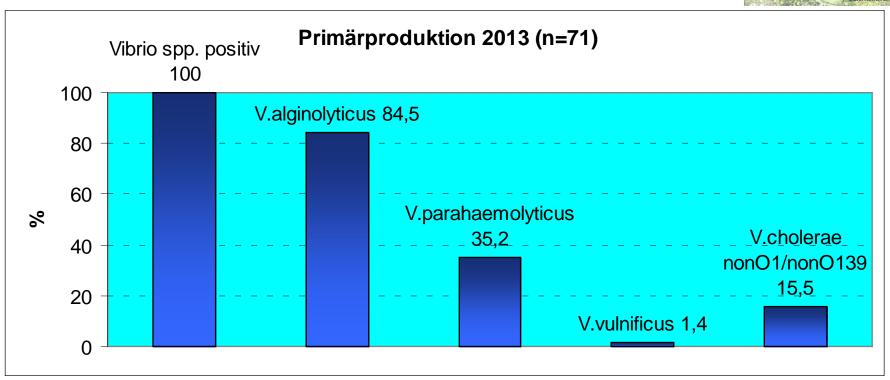

BfG, LAGUS Rostock

Nordsee:

Vibrio alginolyticus Vibrio parahaemolyticus

Ostsee:

Vibrio vulnificus Vibrio cholerae non-O1, non-O139


Böer et al., Microb Ecol 2013

Vibrio spp. in Miesmuscheln aus Erzeugungsgebieten in Niedersachsen

- ➤ Häufig mehrere *Vibrio* Spezies präsent
- ➤In Sommermonaten 10³ 10⁴ cfu *Vibrio*/g Muschelfleisch

Vibrio spp. Prävalenz in Lebensmitteln

80 % importiert hohe Diversität

Hohe Prävalenz in Meeresfrüchten

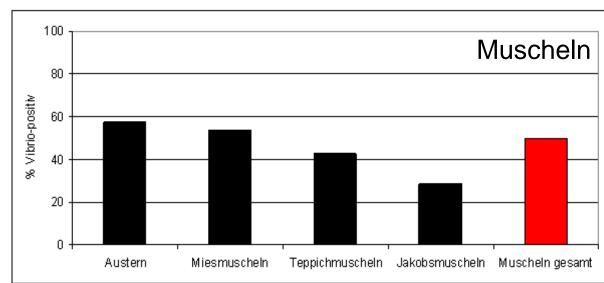
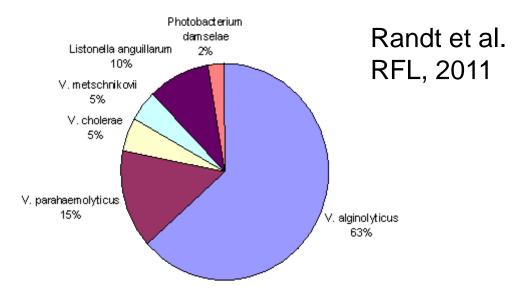



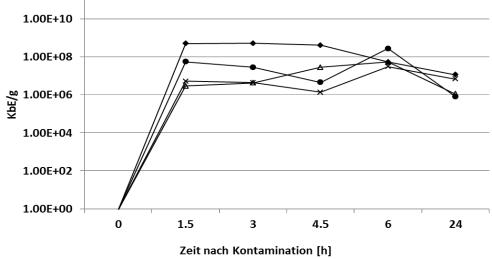
Abb.3: Vibrio-Nachweisraten in Muschelproben aus dem Lebensmitteleinzelhandel

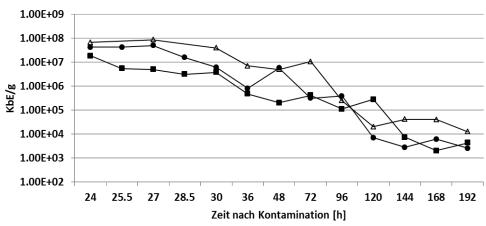
Kontaminations-, Hälterungs- und Lagerungsversuche

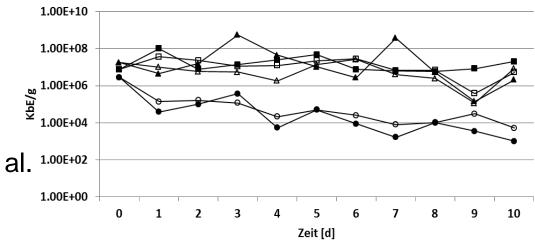
Kontamination

hohe Anreicherung bereits innerhalb von 1-2 h Akkumulation v. a. in Mitteldarmdrüse

Hälterung (7d) langsames Auswaschen von *Vibrio* spp.




Lagerung (10d, praxisnah) keine Reduktion der *Vibrio*-Konzentration

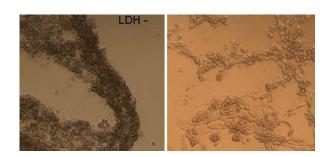


Herrfurth et al. ¹ J. Shellfish ¹ Res. 2013

Vibrio vulnificus Isolate aus der Ostsee

LANDESAMT FÜR GESUNDHEIT UND SOZIALES MECKLENBURG-VORPOMMERN

Exposition


V. vulnificus häufig – Risiko von Wundinfektionen

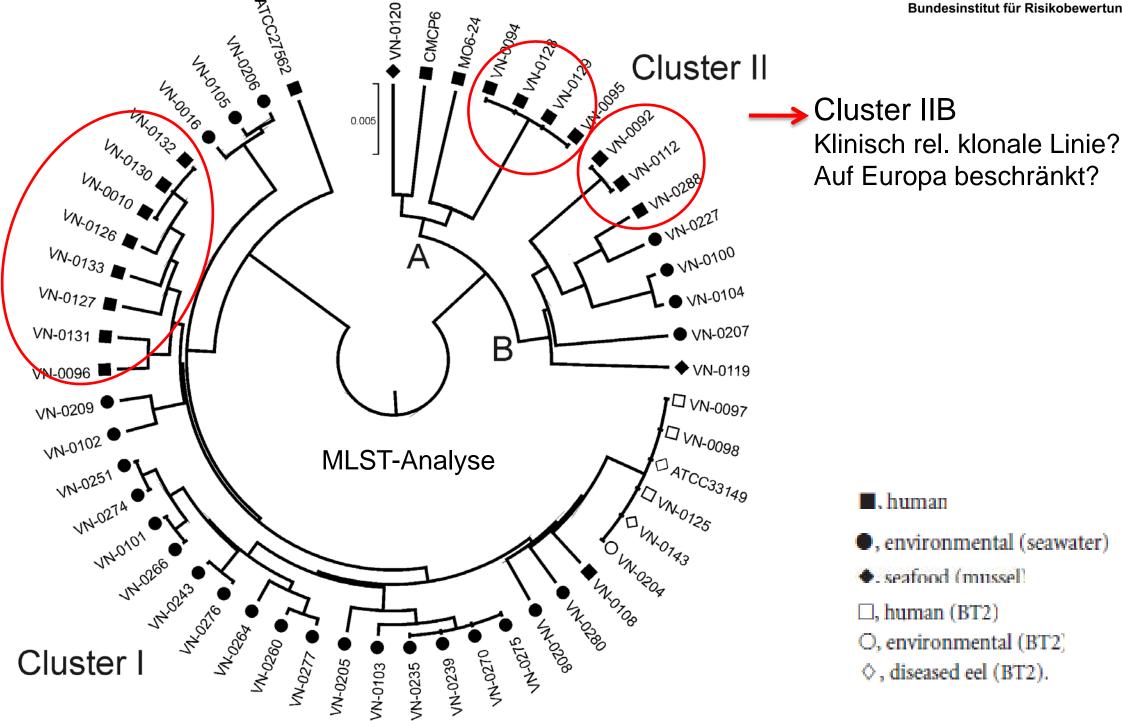
49 Ostseestämme (19 klinisch, 30 Umwelt)

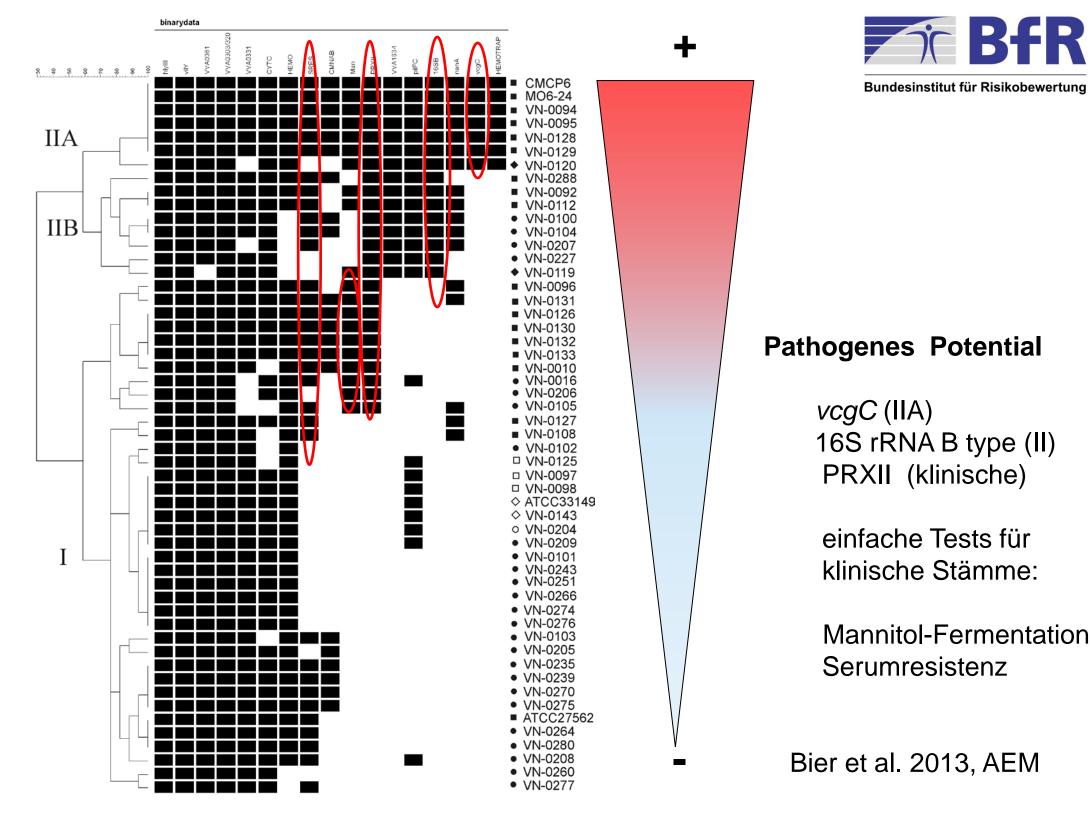
4 Referenzstämme

Phänotypische Tests

Hämolyse, Zytotoxizität, Serumresistenz Mannitol-Fermentation

Genotypische Tests


16S rRNA, vcg locus, pathogenicity region XII, nab region, nanA


Sequenz Alleltypisierung

MLST, pilF

Vibrio vulnificus – Isolate aus der Ostsee

Vibrio cholerae non-O1, non-O139 aus deutschen und österreichischen Patienten

Exposition

Lebensmittel

Ostsee, alkalische Binnengewässer

18 non-O1, non-O139 Stämme

8 Stämme von Durchfallpatienten (Reise-assoziiert)

10 Stämme von lokalen Infektionen

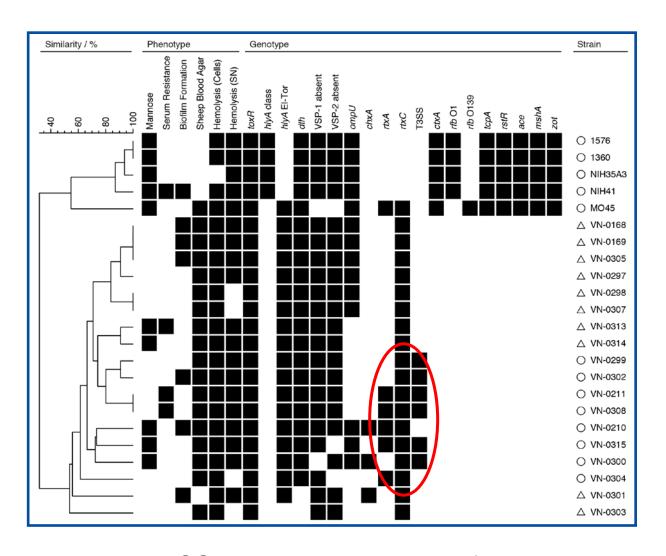
5 "Cholera" Referenzstämme

Speziesidentifizierung

rpoB Sequenzierung, MALDI-TOF MS, toxR PCR, Biochemie

Genotypische Marker

ctx, tcp, hlyA, ace, zot, chx, rtxA, rtxC, rtxA, TTSS, dth


Phänotypische Marker

Serumresistenz, Biofilm-Bildung, Hämolyse

rtxA und TTSS in Isolaten aus Durchfallpatienten

Schirmeister et al. 2013, EJCMID

Risikobewertung?

Wie können potentiell pathogene Stämme identifiziert werden?

Ein einzelnes Merkmal erlaubt keine eindeutige Identifizierung

→ Abschätzung des Pathogenitätspotentials über wenige Marker

Vibrio vulnificus

Hinweise auf MLST-Cluster mit pathogenen Stämmen durch:

vcg-Analyse (PCR)

16S rRNA Analyse (PCR)

Anwesenheit von PRXII (PCR)

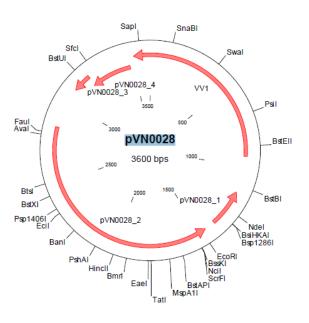
Mannitol-Fermentation (biochemisch oder PCR)

Serumresistenz (biochemisch im Hochdurchsatz)

Vibrio cholerae non-O1, non-O139

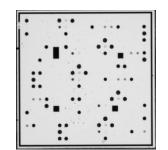
Lebensmittelisolate: Untersuchung auf TTSS / rtxA (PCR)

Pathogentätsmechanismen von Vibrionen


Whole Genome Sequencing-Projekt:

Vibrio-Isolat	Genomgröße	GC-Gehalt	CDS	tRNA's	rRNA´s	Contigs
Val T476	5.172.106 bp	44.31 %	4672	67	4	62
Vp CH237	5.168.103 bp	45.06 %	4667	73	4	79
Vp CH274	5.208.618 bp	45.02 %	4708	85	4	55
Vp V174/11	5.249.137 bp	44.90 %	4787	74	4	87
Vp SR3	4.998.860 bp	45.25 %	4476	72	4	54
Vv CH310	4.990.623 bp	46.22 %	4448	73	4	146
Vv CH1629	4.941.923 bp	46.36 %	4369	82	4	176
Vv RKI	5.009.052 bp	46.37 %	4419	81	4	163
Vv 48/10	5.024.878 bp	46.48 %	4448	71	3	143
Vv 52/10	4.896.546 bp	46.47 %	4283	86	4	144
Vv 57/10	4.948.239 bp	46.27 %	4325	83	3	137
Vv 63/10	5.131.479 bp	46.21 %	4529	79	3	181
Vv va35903	5.131.257 bp	46.21 %	4518	79	3	190

Analyse eines *V. parahaemolyticus* Stammes VN-0028


Etablierung genetischer Werkzeuge (Knockout-Mutanten) Deletion eines putativen Hämolysingens

→ Reduktion der Hämolyse

Entwicklung eines DNA-Mikroarrays

1. Array-Version

- 24 Zielgene
- Hybridisierungssonden: 68
- Abdeckung: 5fach
- Datenauswertung: halbautomatisch
- "Testarray" zur Etablierung des Versuchsprotokolls

2. Array-Version

- 74 Zielgene + Genus- und Speziesmarker
- Hybridisierungssonden: > 200
- Abdeckung: 3fach
- Datenauswertung: automatisch
- Screening von Vibrio-Isolaten

Isolation von Vibrio spp. aus humanen Stuhlproben

Untersuchung von Durchfallpatienten am Universitätsklinikum Dresden (UKD) ohne Hinweis auf eine Exposition

- Med. Versorgungszentrum am Universitätsklinikum Dresden (UKD)
- UKD-Ambulanzen
- UKD-Stationen
- → Probenahmedatum ≤ 48h Aufnahmedatum
- → 550 Stuhlproben → Keine Vibrionen nachweisbar

Pilotstudien zur menschlichen Erkrankungslast von Wund- und gastroenteritischen Infektionen durch Nicht-Cholera-Vibrionen

- Retrospektives und prospektives Fallmonitoring in Deutschland
- Analyse von Daten der Kassenärztlichen Bundesvereinigung (KBV) im Hinblick auf nicht ausdiagnostizierte Infektionen mit Nicht-Cholera-Vibrionen

Risikokommunikation

Informationsbroschüre:

Verteilung an Landesgesundheitsbehörden, Gesundheitsämter sowie Mediziner in Klinik und Praxis Hinweis auf Meldefähigkeit solcher Infektionen im IfSG

Symposium für Ärzte (November 2012, Rostock) mit Landesamt für Gesundheit und Soziales (LAGuS),

Zielgruppe: Niedergelassene Ärzte, med. Personal aus der Klinik, Mitarbeiter des ÖGD

Thema: Vibrionen als mögliche Krankheitserreger in der Ostsee

Biotechnologie - Q-Bioanalytic

Validierung der neu entwickelten qPCR- Kits zum Nachweis von V. cholerae, V. parahaemolyticus, V. vulnificus, V. alginolyticus in Seafood

Ringversuch 1

Alle VibrioNet-Labore (insgesamt sechs)

Ringversuch 2 (DNA und dotierte Seafood-Matrix)

VibrioNet-Labore sowie Untersuchungsämter aus

Baden-Württemberg (CVUA Freiburg)

Bayern (LGL Oberschleißheim)

Mecklenburg-Vorpommern (LALLF Rostock)

Nordrhein-Westfalen (CVUA-RRW Krefeld)

Sachsen-Anhalt (LAV Magdeburg)

Schleswig-Holstein (LL Neumünster)

Fazit - Internationale Kooperation

Chiang Mai Uni Thailand - FU Berlin, BfR

Analyse von *Vibrio*-Isolaten aus Shrimps Publikation in J Food protection, Koralage et al., 2012

Inst. Oceanography, Indien – TU Dresden, AWI, BfR

Analyse von indischen *Vibrio-*Isolaten mit Chip, mittels MALDI-TOF, PCR und Analyse von Antibiotika-Resistenzen. Gemeinsame Publikation in Vorbereitung

ICDDR Bangladesch - BfR

Wissenschaftlicher Austausch (Virulotyping)
Publikation in Eur J Clin Microbiol & Inf Dis, Schirmeister et al., 2013

Uni Santiago de Chile - BfR

Proteom-Analyse von chilenischen Ausbruchstämmen

Workshop (zweitägig) von VibrioNet-Partner (FU Berlin) in Thailand und Vietnam

Trainingskurse (mehrwöchig in D) – alle Partner beteiligt

Hypothesen

Zunahme der Infektionen mit Vibrionen durch globale Erwärmung

Basisdaten für Vibrio spp. Prävalenz in Nord- und Ostsee, Saisonalität

Anstieg des Risikos der Vibrio-Infektionen durch epidemiologische Faktoren

Hohe Belastung bei Lebensmitteln (Meeresfrüchte, Fischereiprodukte) sowohl importiert als auch autochthon

Unterschätzung der Bedeutung von Vibrio-Infektionen

Kommunikation der Risiken (Verbraucher und Ärzte) als Grundlage für bessere Prävention und Datengewinnung

Public Health: Sicheres Seafood – Überwachung und Handlungsmaßnahmen

Lebensmittelüberwachung

- Vibrio vulnificus: Strikte Abwesenheit des Pathogens in Seafood
- Vibrio parahaemolyticus: Abwesenheit von toxinbildenden Stämmen
- Vibrio cholerae: Abwesenheit der pandemischen Stämmen mit Choleratoxin

Forschungsbedarf

- Standardisierte Verfahren zum quantitativen Nachweis von Vibrionen
- Vibrio parahaemolyticus: Charakterisierung von Trh2 Isolaten aus D
- Charakterisierung des Pathogenitätspotentials von Vibrio cholerae non-O1, non-O139 und weiterer in Seafood vorkommender Vibrionen (z. B. V. metschnikowii, V. mimicus, V. fluvialis)

Public Health: Badegewässer – Überwachung und Handlungsmaßnahmen

Überwachung von Badegewässern in Sommermonaten

- Vibrio vulnificus und Vibrio cholerae non-O1, non-O139
 Kontrolle der Keimzahl und Sicherstellung von klinischen Isolaten für weitere Forschungsarbeiten
- Vibrio parahaemolyticus Vibrio alginolyticus: Sicherstellung von klinischen Isolaten

Forschungsbedarf

- Vibrio vulnificus, Vibrio cholerae non-O1, non-O139:
 Charakterisierung von klinischen Isolaten durch Genomvergleiche (NGS) und Pathogenitätsforschung (Knockout Mutanten, Tierversuche)
- Vibrio parahaemolyticus Vibrio alginolyticus: ggf. Pathogenitätsforschung an neuen klinischen Isolate

DANKE FÜR IHRE AUFMERKSAMKEIT

Eckhard Strauch VibrioNet-Verbund

Bundesinstitut für Risikobewertung bfr@bfr.bund.de • www.bfr.bund.de

