

Helge Böhnel und Frank Gessler

Die Zoonose Botulismus. Der Weg des Botulinum-Toxins von der Bakterie in die Zielzelle

Vorhaben im BMBF-Förderschwerpunkt "Forschungsverbünde zu zoonotischen Infektionskrankheiten" 2007-2010

Botulismus

betrifft zumindest alle warmblütigen Tiere und Mensch

Botulismus ist eine Zoonose

EU-Richtlinie 2003/99 von 2003

Mensch

Clostridium botulinum

+

Botulinum-Neurotoxine

Tier

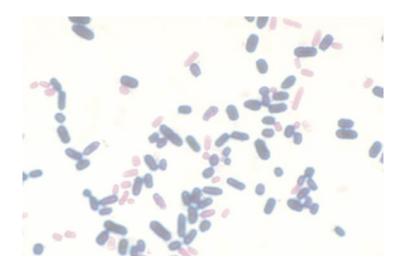
Umwelt

Clostridium botulinum

anaerober, gram+ Sporenbildner

4 phänotypische Gruppen

Gruppe I – proteolytisch A, B, F


Gruppe II – nicht proteolytisch B, E, F

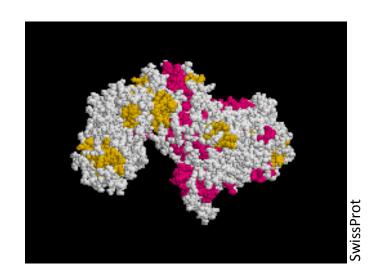
Gruppe III – Typen C und D

Gruppe IV – Typ G

Clostridium botulinum

anaerober, gram+ Sporenbildner

4 phänotypische Gruppen


Gruppe I – proteolytisch A, B, F

Gruppe II – nicht proteolytisch B, E, F

Gruppe III – Typen C und D

Gruppe IV – Typ G

Botulinum-(Neuro)toxine

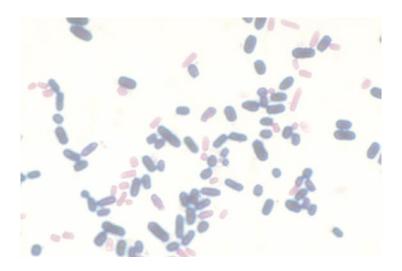
MM 150.000 – Zn-Metalloprotease

Typ A - A1 bis A5 (A7?)

Typ B - B1 bis B6

Typ C - C1, C/D

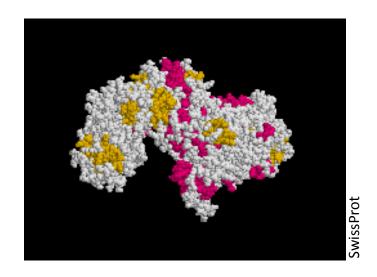
Typ D - D, D/C


Typ E - E1 bis E6

Typ F - F1 bis F7

Typ G -

Typ H - ??

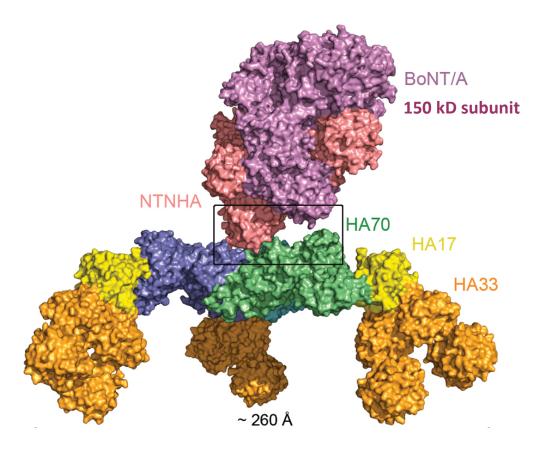

Clostridium botulinum

anaerober, gram+ Sporenbildner

4 phänotypische Gruppen
Gruppe I – proteolytisch A, B, F
Gruppe II – nicht proteolytisch B, E, F
Gruppe III – Typen C und D
Gruppe IV – Typ G

Botulinum-(Neuro)toxine

MM 150.000 – Zn-Metalloprotease


Typen A bis H, zahlreiche Subtypen

weitere Toxine

C2 – ADP-Ribosylase -> Aktin

C3 – ADP-Ribosylase -> Rho A, B und C

Lee et al., PLOS pathogens, 2013

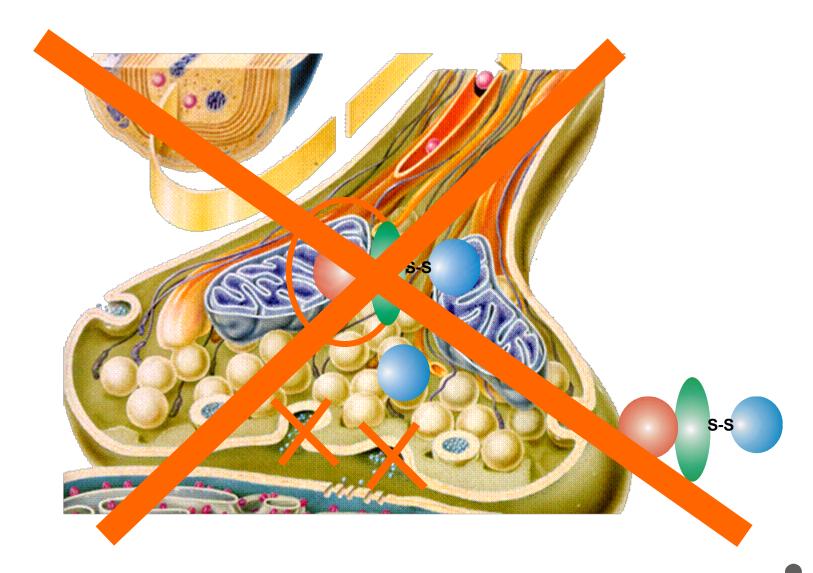
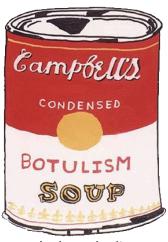


Foto: I. Dutra

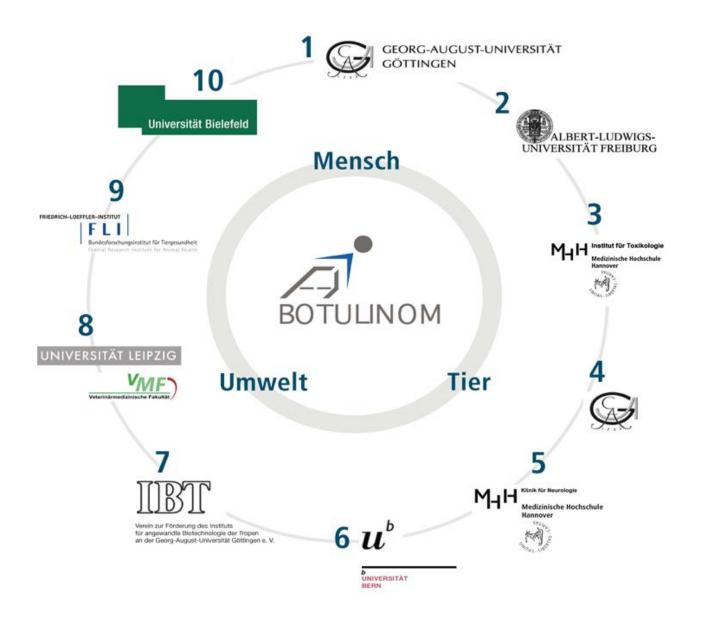

Foto: B. Schwagerick

akut chronisch

Intoxikation Toxikoinfektion

akut chronisch

Intoxikation Toxikoinfektion



Tony 'Baloney' Juliano

Foto: CDC, Atlanta

Mensch

Clostridium botulinum

+

Botulinum-Neurotoxine

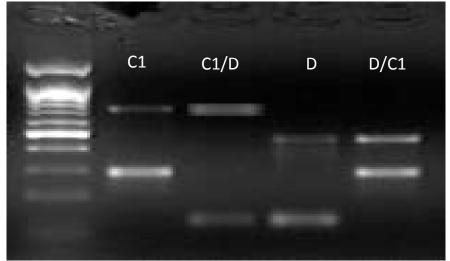
Umwelt

Tier

Clostridium botulinum
+
Botulinum-Neurotoxine

 3046 Referenzstämme und Feldisolate, davon 185 ursprünglich als Clostridium botulinum typisiert

- 3046 Referenzstämme und Feldisolate, davon 185 ursprünglich als Clostridium botulinum typisiert
- Stabilisierung und Identifizierung der Stämme



- 3046 Referenzstämme und Feldisolate, davon 185 ursprünglich als Clostridium botulinum typisiert
- Stabilisierung und Identifizierung der Stämme
- Toxingensequenzierung, Toxizitätsprüfung und Typisierung bei Clostridium botulinum-Stämmen

- 3046 Referenzstämme und Feldisolate, davon 185 ursprünglich als Clostridium botulinum typisiert
- Stabilisierung und Identifizierung der Stämme
- Toxingensequenzierung, Toxizitätsprüfung und Typisierung bei Clostridium botulinum-Stämmen
- Multiplex-PCR zur einfachen und schnellen Differenzierung der C/D-Mosaikstämme

Weitergabe der Stammsammlung an Prof. Rodloff, Leipzig

Prof. Dr. A. Tauch

 Genomsequenzierung und Annotation Clostridium botulinum Typ C, Stamm IBT 2300 (Datenbank GenDB)

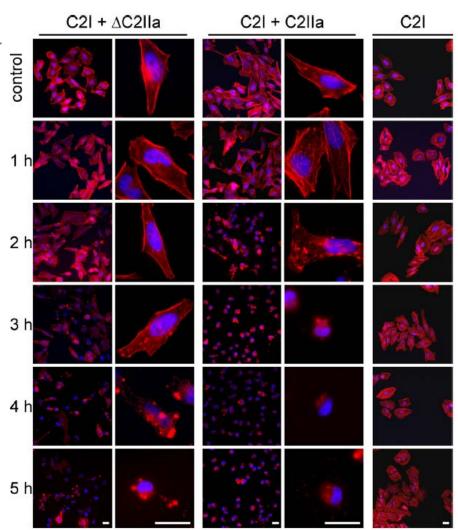
ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

Prof. Dr. K. Aktories

Prof. Dr. A. Tauch

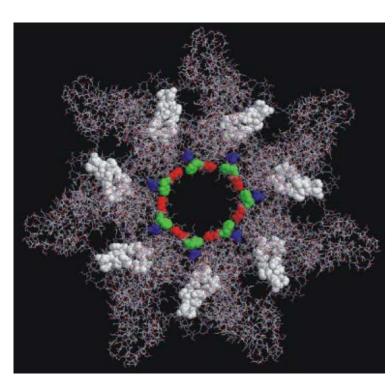
- Genomsequenzierung und Annotation Clostridium botulinum Typ C, Stamm IBT 2300 (Datenbank GenDB)
- "neues" C2-Toxin identifiziert (um 129 Aminosäuren verlängert)

(C)2300 Verlängerung (C)2300 (C)203U28	716 586 586	LDKLINDIDHISSINIMNNTNSGIDYTTGLSNRIKGSDGIYRAETKAFSFRTKEINYSRGYYRIRFVVQCSSSFTCNFQL LVKVITFKENISSINIINDTNFGVESMTGLSKRIKGNDGIYRASTKSFSFKSKEIKYPEGFYRMRFVIQSYEPFTCNFKL LVKVITFKENISSINIINDTNFGVQSMTGLSNRSKGQDGIYRAATTAFSFKSKELKYPEGRYRMRFVIQSYEPFTCNFKL * *: * : * * * * * * * * * * * * * * *	795 665 665
(C) 2300 Verlängerung (C) 2300 (C) 203U28	716 586 586	FNNQIFSRSFHEGFFDEFAYFKYDGNNSFLDISCNIISNSNPGVFLIEVTRI- FNNLIYSNSFDIGYYDEFFYFYYNGSKSFFDISCDIINSINRLSGVFLIELDKLI FNNLIYSSSFDKGYYDEFFYFYYNGSKSFFNISCDIINSINRLSGVFLIELDKLI *** *: * ** * * * * * * * * * * * * * *	



Prof. Dr. K. Aktories

Prof. Dr. A. Tauch


- Genomsequenzierung und Annotation Clostridium botulinum Typ C, Stamm IBT (Datenbank GenDB)
- "neues" C2-Toxin identifiziert (um 129 Aminosäuren verlängert)

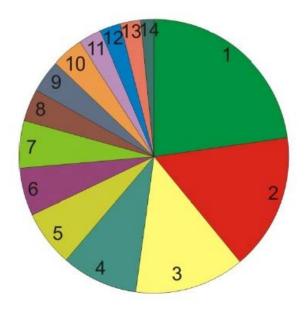
Sterthoff et al., Infect. Immun., 2010

 Glu³⁹⁹, Asp⁴²⁶, Phe⁴²⁸ von Bedeutung für die Bindung von C2II und die Translokation der enzymatischen Komponente C2I ins Zytosol

Lang et al., Biochem., 2008 Neumeyer et al., J. Biol. Chem., 2008

Prof. Dr. K. Aktories

- Glu³⁹⁹, Asp⁴²⁶, Phe⁴²⁸ von Bedeutung für die Bindung von C2II und die Translokation der enzymatischen Komponente C2I ins Zytosol
- C2 führt zur Bildung einer netzartigen Struktur von Protrusionen -> deutliche Zunahme der Bakterienadhäsion am Modell Clostridium difficile



Schwan et al., PLOS Pathogen, 2009

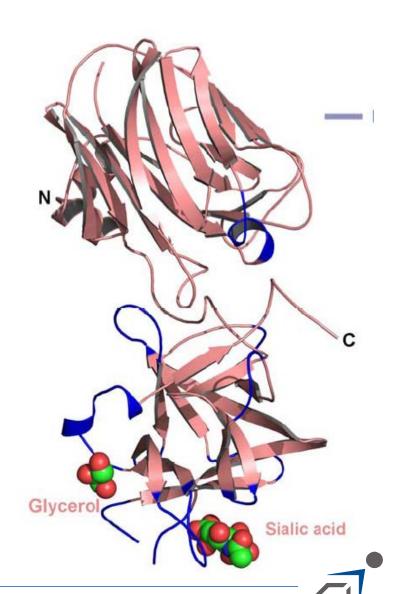
Prof. Dr. A. Tauch

- Genomsequenzierung und Annotation Clostridium botulinum Typ C, Stamm IBT 2300 (Datenbank GenDB)
- "neues" C2-Toxin identifiziert (um 129 Aminosäuren verlängert)
- Metagenomanalyse Gärrestprobe

1- C. thermocellum	6.368	22,7 %
2- C. leptum	4.614	16,4 %
3- C. cellulolyticum	3.650	13,0 %
4- C. phytofermentans	2.510	8,9 %
5- C. difficile	1.887	6,7 %
6- C. perfringens	1.638	5,8 %
7- C. botulinum	1.567	5,6 %
8- C. beijerinkii	1.136	4,0 %
9- C. sp L2-50	1.090	3,9 %
10- C. kluyveri	1.037	3,7 %
11- C. tetani	814	2,9 %
12- C. acetobutylicum	720	2,6 %
13- C. novyi	634	2,3 %
14- andere	408	1,5 %

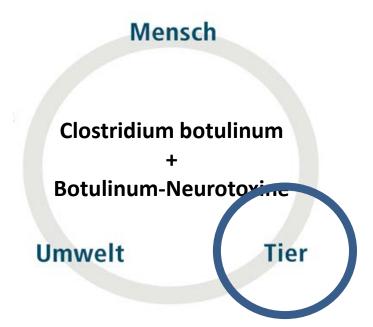
Prof. Dr. H. Bigalke/Dr. A. Rummel

 BoNT/C1 besitzt zwei neuartige Gangliosid-Bindungstaschen HcN C-term Loop-3 Sia-2 Hcc Loop-1 Sia-1 Loop-2 (WY-loop)


Strotmeier et al., Mol. Microbiol., 2011 Strotmeier et al., Biochem. J., 2010 Rummel et al., J. Neurochem., 2009

Prof. Dr. H. Bigalke/Dr. A. Rummel

- BoNT/C1 besitzt zwei neuartige Gangliosid-Bindungstaschen
- BoNT/D Gangliosidbindungstasche homolog TeNT, weitere Tasche an Position wie BoNT/A, B, E, F und G, AS abweichend


Strotmeier et al., Mol. Microbiol., 2011 Strotmeier et al., Biochem. J., 2010 Rummel et al., J. Neurochem., 2009

Prof. Dr. H. Bigalke/Dr. A. Rummel

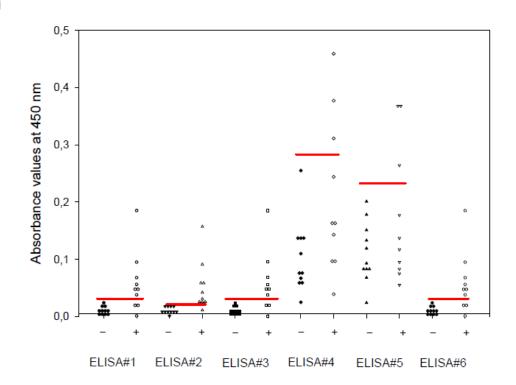
- BoNT/C1 besitzt zwei neuartige Gangliosid-Bindungstaschen
- BoNT/D Gangliosidbindungstasche homolog TeNT, weitere Tasche an Position wie BoNT/A, B, E, F und G, AS abweichend
- neuronale Aufnahme wahrscheinlich über 2 Rezeptoren
 - humantoxisch nach parenteraler Applikation Inhalation?

PD Dr. F. Gessler

DNA-Mikroarray zur
 Detektion und Typisierung
 von Clostridium botulinum

Target	Anzahl der Sonden	Subtypen	Bemerkung
NTNH	3	7	Weitere Sonde für 2.Layout geplant
BoNTA	8	4	
BoNTB	4	3	
BoNTC	6	2	
BoNTD	4	2	
BoNTE	9	4	Inkl. BoNTE von C. butyricum
BoNTF	17	4	Inkl. BoNTF von <i>C. baratii</i>
BoNTG	5	1	
fldB	3	1	
rnpB	8	3	Typ G noch nicht integriert

DNA-Mikroarray zur
 Detektion und Typisierung
 von Clostridium botulinum



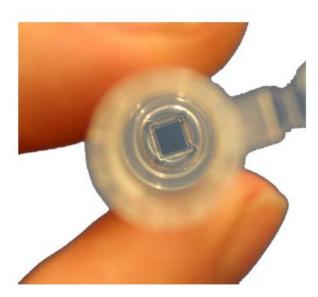
PD Dr. F. Gessler

Prof. Dr. M. Krüger, PD Dr. W. Schrödl

ELISA zum AK-Nachweis Tier und Mensch

Mawhinney et al., Vet. J., 2012

DNA-Mikroarray zur
 Detektion und Typisierung
 von Clostridium botulinum


PD Dr. F. Gessler

Prof. Dr. M. Krüger, PD Dr. W. Schrödl

- ELISA zum AK-Nachweis
 Tier und Mensch
- Multiplex Biochip zum Toxinnachweis

DNA-Mikroarray zur
 Detektion und Typisierung
 von Clostridium botulinum

PD Dr. F. Gessler

- Multiplex Biochip zum Toxinnachweis
- qPCR Toxingene, Multiplex

Prof. Dr. M. Krüger, PD Dr. W. Schrödl

DNA-Mikroarray zur
 Detektion und Typisierung
 von Clostridium botulinum

PD Dr. F. Gessler

- ELISA zum AK-Nachweis
 Tier und Mensch
- Multiplex Biochip zum Toxinnachweis
- qPCR Toxingene, Multiplex

Prof. Dr. M. Krüger, PD Dr. W. Schrödl

ELISA zum AK-Nachweis Tier und Mensch

DNA-Mikroarray zur
 Detektion und Typisierung
 von Clostridium botulinum

PD Dr. F. Gessler

- ELISA zum AK-Nachweis
 Tier und Mensch
- Multiplex Biochip zum Toxinnachweis
- qPCR Toxingene, Multiplex

Prof. Dr. M. Krüger, PD Dr. W. Schrödl

- ELISA zum AK-Nachweis
 Tier und Mensch
- ELISA zum Toxinnachweis

DNA-Mikroarray zur
 Detektion und Typisierung
 von Clostridium botulinum

PD Dr. F. Gessler

- ELISA zum AK-Nachweis
 Tier und Mensch
- Multiplex Biochip zum Toxinnachweis
- qPCR Toxingene, Multiplex

Prof. Dr. M. Krüger, PD Dr. W. Schrödl

- ELISA zum AK-Nachweis Tier und Mensch
- ELISA zum Toxinnachweis
- Pansenmikroflora Dysbiose

PD Dr. F. Gessler

Prof. Dr. M. Krüger, PD Dr. W. Schrödl

orientierende Fall-Kontroll-Studie

Fall-Kontroll-Studie Botulinom in Milch	ıviehbetrieben	Frbg.Nr P
Name des Prüfers:	Datum	
Einrichtung des Prüfers:		

PD Dr. F. Gessler

Dr. R. Merle

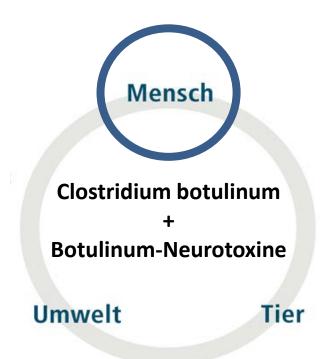
Prof. Dr. M. Krüger, PD Dr. W. Schrödl

orientierende Fall-Kontroll-Studie

		Fall 1	Fall 2	Fall 3	Kontrolle 1	Kontrolle 2	Kontrolle 3					
	Habitus	3	0	3	0	0	0					
·Ë	Ernährungszustand	3	0	3	1	0	3					
튭	Verhalten	2	0	2	0	0	1					
Allgemein	Ataxien	3	3	2	0	1	0					
	untyp. Beinstellung	1	3	2	0	0	0					
Verdauung	Kot	0	1	0	0	0	1					
2	Pansen	3	1	3	1	0	0					
ard.	Wiederkauverhalten	4	٥	٥	Q	•	Q					
Š	Darm	1	1	1	0	1	0					
	tröpfelnder Harnabsatz	0	0	0	0	0	0					
-5	gestaute Venen	0	0	3	0	3	0					
Systemisch	Ödeme	0	0	0	0	0	0					
ster	auffällige Atmung	2	1	1	0	0	1					
Š	Entzündung an Klauen und Gelenken	2	3	3	0	3	0					
	Muskelatrophie	0	1	3	0	0	3					
	fehlende Abwehrbewegung Kopf	2	0	2	0	0	0					
	Mydriasis	3	0	0	0	0	0					
	fehlender Lidreflex	3	0	1	0	0	0					
	fehlender Ohrreflex	2	0	0	0	0	0					
	Schluckbeschwerden	1	0	0	0	0	0					
	auffällige Lautäußerungen	Q	٥	٥	Q		0					
듔	eingeschränkter Zungenreflex	1	0	0	0	0	0					
Neurologisch	muköser Speichel	1	0	0	0	0	0					
2	hängende Unterlippe	1	0	0	0	0	0					
a Z	eingeschränkter Analreflex	0	0	2	0	0	0					
	eingeschränkter Hautreflex	1	0	1	0	0	1					
	eingeschränkter Klauenreflex	1	0	1	0	0	0					
	Fibularislähmung	1	0	0	0	0	0					
	Ischiadikuslähmung	2	2	1	0	1	0					
	Obturatorislähmung	1	0	0	0	1	0					
	Radialislähmung	0	1	0	0	0	0					
hur	C. perfringens	0	3	1	0	2	0					
suc	C. botulinum	3	1	1	0	2	0					
ten	sulfitreduzierende Clostridien	0	0	9	0	0	0					
Kotuntersuchu	Salmonellen	0	0	0	0	0	0					
8	Mykobakterien	1	2	٥	0	0	<u> </u>					

in Zusammenarbeit mit RGD M-V Dr. B. Schwagerick

PD Dr. F. Gessler


Dr. R. Merle

Prof. Dr. M. Krüger, PD Dr. W. Schrödl

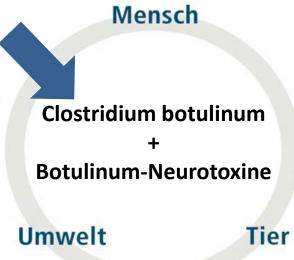
orientierende Fall-Kontroll-Studie

	BoNT indirekt Pansensaft																		
1_betrieb	Α		В			С		D		Е									
Fallbetrieb 1	neg.			neg	g.	r	neg.	neg		ne	eg.								
Fallbetrieb 2	neg.			neg	g.	r	neg.	neg		р	os.								
Fallbetrieb 2	neg.			neg	g.	F	oos.	neg		ne	eg.								
Fallbetrieb 2	neg.			neg	g.	, i	oos.	neg		ne	eg.								
Fallbetrieb 3	neg.			neg	g.	, i	oos.	neg		ne	eg.								
Fallbetrieb 3	neg.			neg	g.	F	oos.	neg		ne	eg.								
Fallbetrieb 3	neg.			neg	g.	į.	oos.	neg		р	os.								
Kontrollbetrieb 1	neg.			neg	g.	r	neg.	neg		ne	eg.								
Kontrollbetrieb 1	neg.			neg	g.	r	neg.	neg		ne	eg.								
Kontrollbetrieb 1																			
Kontrollbetrieb 2												Antik	örper						
Kontrollbetrieb 2		Erregernachweis Kot							Erregernachweis Pansensaft (PS)				-	Antikörper		Antikörper		1 -1	
Kontrollbetrieb 2												(IgG)		(IgA) Kot		(IgA) PS		Lakto-	
Kontrollbetrieb 3			C. k	botu	linun	n Tvi	p:	C. botulinum Typ				Serum Typen:		Typen:		Typen:		ferrin	
Kontrollbetrieb 3							•				Тур:								
Kontrollbetrieb 3																			
			Α	В	С	D	Ε	Α	В	С	D	ABE	CD	ABE	CD	ABE	CD	PS	Kot
	\/a val # alai																		
	Verdächt	_	•	_		_	•	a)	_	_		07		b)		4-		c)	
	pos	itiv	6	0	1	0	9	13	2	1	1	37	26	56	60	17	11	50	81
	nega	ativ 1	161 1	67	166	167	158	151	162	157	163	130	141	111	107	148	154	115	86
	gesa	amt 1	167 1	67	167	167	167	164	164	164	164	167	167	167	167	165	165	165	167
	Un-																		
	verdächt pos		0	0	0	0	5	0	0	0	0	20	8	1	33	13	7	14	34
	nega		85 8	35	85	85	78	84	84	84	84	65	77	84	52	70	76	70	51
	_																		
	gesa	amt	00 6	35	85	85	83	84	84	84	84	85	85	85	85	83	83	84	85

a: p= 0,005; b: p= 0,000; c: p= 0,031

Prof. Dr. D. Dressler

ca. 60 Personen aus Verdachtsbetrieben voruntersucht


10 Personen detailliert an MHH untersucht

20 Personen aus Spontananmeldungen detailliert an MHH untersucht

5 Fälle mit chronischem Botulismus

Inhibitoren enterale Resorption/Inhalation C2 bei Resorption/Infektion

Inhibitoren
enterale Resorption/Inhalation
C2 bei Resorption/Infektion

Mensch

Clostridium botulinum

+

Botulinum-Neurotoxine

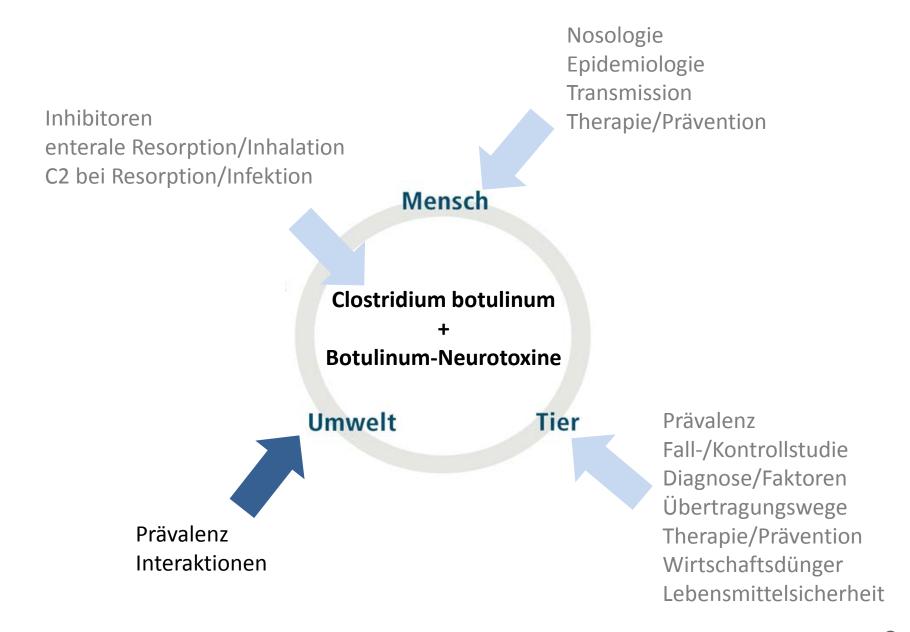
Umwelt

Tier

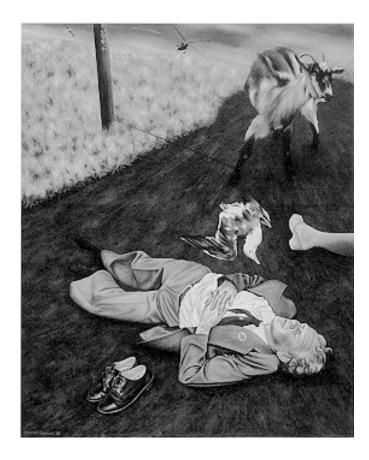
Prävalenz
Fall-/Kontrollstudie
Diagnose/Faktoren
Übertragungswege
Therapie/Prävention
Wirtschaftsdünger
Lebensmittelsicherheit

Nosologie Epidemiologie Transmission Therapie/Prävention

Clostridium botulinum


Mensch

Botulinum-Neurotoxine


Umwelt

Tier

Prävalenz
Fall-/Kontrollstudie
Diagnose/Faktoren
Übertragungswege
Therapie/Prävention
Wirtschaftsdünger
Lebensmittelsicherheit

Forschungsvorhaben gefördert aus Mitteln des BMBF Zoonosen

Dermot Seymour Botulism over Mullaghcreevy, 1985

Vielen Dank für Ihre Aufmerksamkeit!