

Arboviren in Deutschland – neue Ergebnisse, neue Möglichkeiten für den öffentlichen Gesundheitsdienst

Verbund:

Arboviren in Deutschland: Pathogenese, Diagnostik und Überwachung Förderzeitraum 3 Jahre

Sprecher: Prof. Dr. med. Frank T. Hufert, Universitätsmedizin Göttingen

Agenda

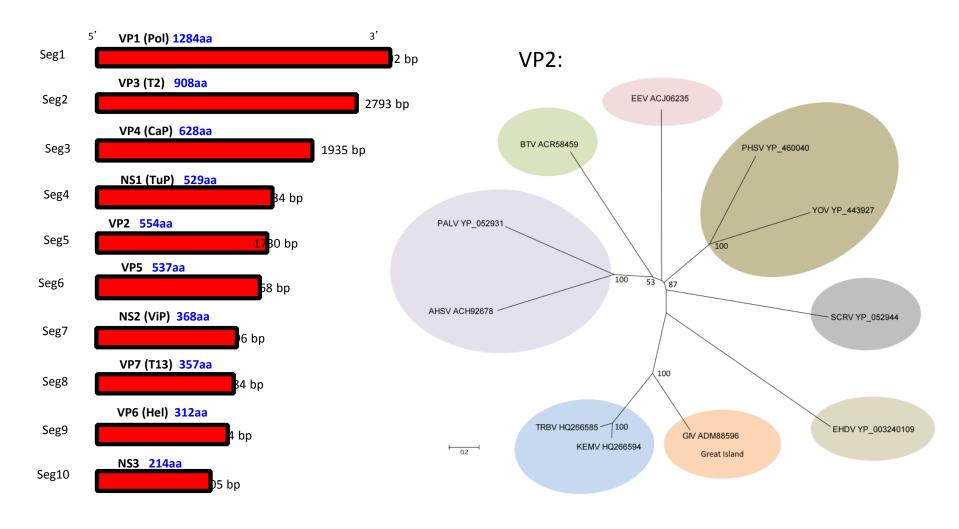
- Grundlagenprojekte
 - Genomsequenzierung
 - Immunmodulation von FSMEV u. TRBV
- Anwendungsorientierte Projekte
 - Diagnostikentwicklungen
 - Patientenstudien/ Biobank
 - Feldstudien

Grundlagenprojekte

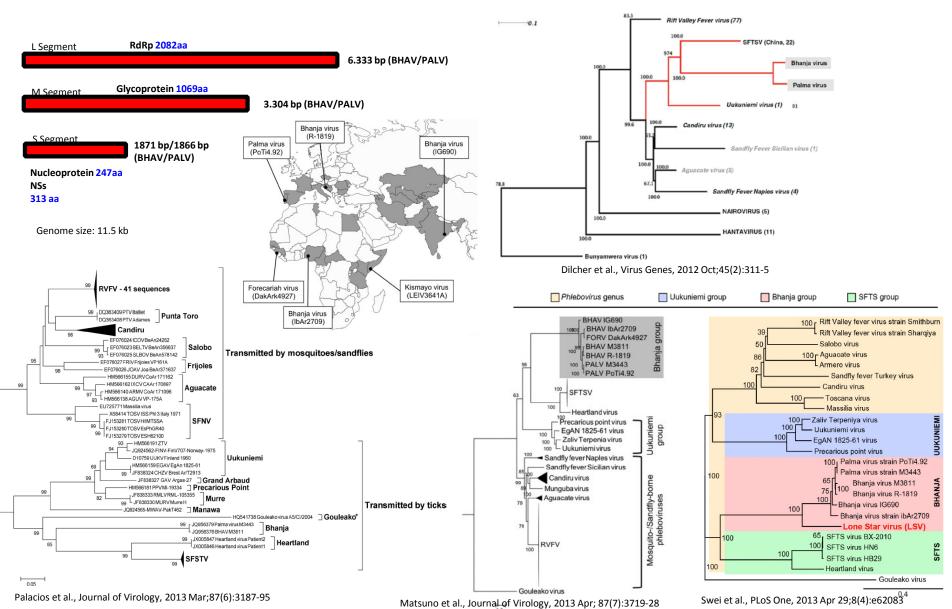
- Genomsequenzierung
- Immunmodulation:
 - Frühsommermeningoenzephaltitisvirus (FSMEV)
 - Tribecvirus (TRBV)
 - Wechselwirkung von Integrinen mit West-Nil-Virus

Europäische Arboviren

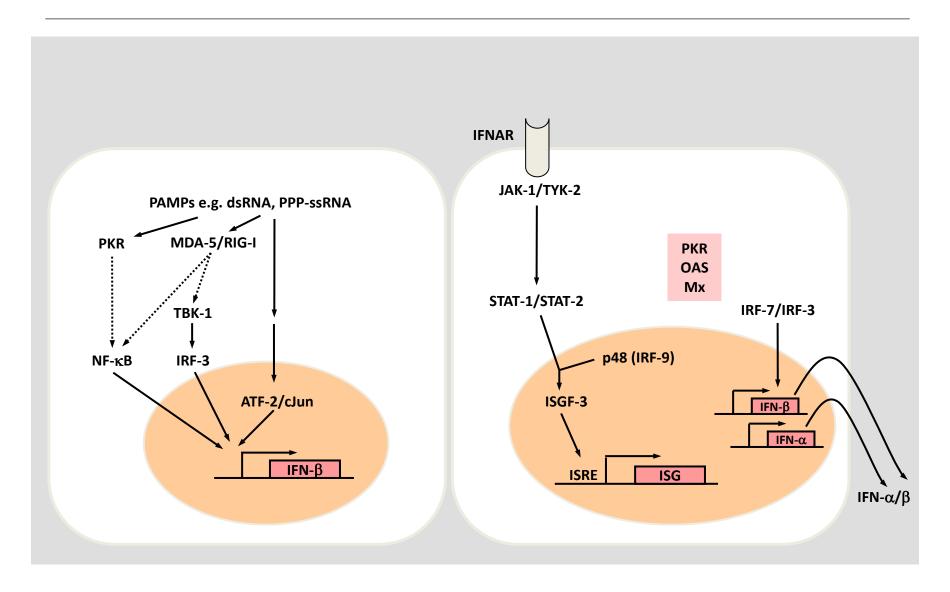
Virus	Familie	Genus	Genom	Vektor	
Eyach	Reoviridae	Coltivirus	dsRNA	Tick	
Tribec	Reoviridae	Orbivirus	dsRNA	Tick	
Erve	Bunyaviridae	Nairovirus	-ssRNA	Tick	_
Bhanja	Bunyaviridae	Phlebovirus	-ssRNA	Tick	1
Palma	Bunyaviridae	Phlebovirus	-ssRNA	Tick	
Uukuniemi	Bunyaviridae	Phlebovirus	-ssRNA	Tick	
FSMEV	Flaviviridae	Flavivirus	+ssRNA	Tick	
Tahyna	Bunyaviridae	Orthobunyavirus	-ssRNA	Mosquito	
Batai	Bunyaviridae	Orthobunyavirus	-ssRNA	Mosquito	1
Inkoo	Bunyaviridae	Orthobunyavirus	-ssRNA	Mosquito	1
West Nile	Flaviviridae	Flavivirus	+ssRNA	Mosquito	
Sandfly fever Sicilian	Bunyaviridae	Phlebovirus	-ssRNA	Sandfly	
Sandfly fever Naples	Bunyaviridae	Phlebovirus	-ssRNA	Sandfly	6
Sandfly fever Turkey	Bunyaviridae	Phlebovirus	-ssRNA	Sandfly	ブ
Toscana	Bunyaviridae	Phlebovirus	-ssRNA	Sandfly	


Im Rahmen des Arbovirus-Verbundes sequenzierte Viren

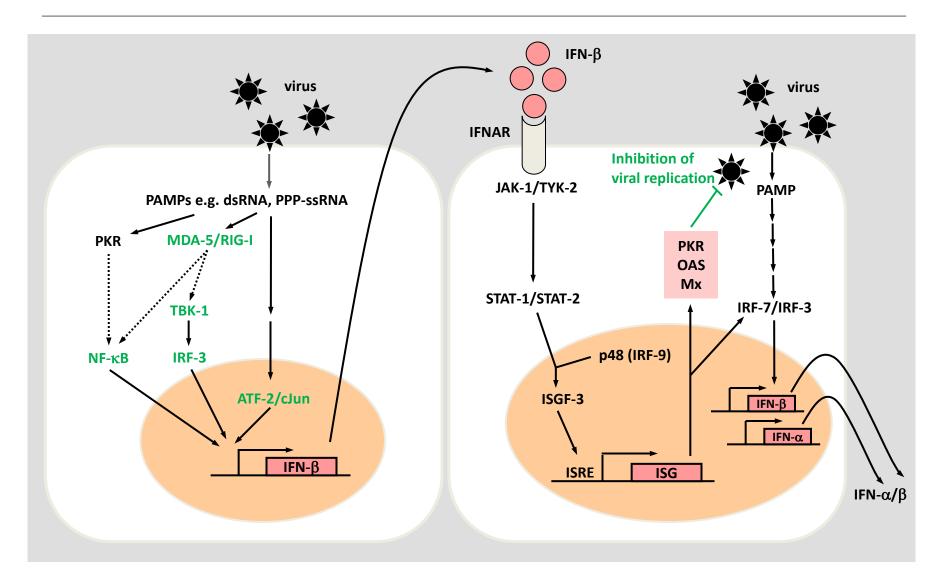
Virus	Familie/ Genus	Genom- organisation	bereits bekannte Sequenzen	Größe des assemblierten Gesamtgenoms	hieraus hervorgegangene Publikationen
Tribeč virus	Reoviridae/ Orbivirus	dsRNA/ 10 Segmente	-	17.871 bp	Dilcher et al., Virology 2012 Feb 5;423(1):68-76
Kemerovo virus	Reoviridae/ Orbivirus	dsRNA/ 10 Segmente	-	17.875 bo	Dilcher and Weidmann, Virology Journal 2012 Aug 21;9:166
Erve virus	Bunyaviridae/ Nairovirus	-ssRNA/ 3 Segmente	442 bp von L Segment (partiell)	17.907 bp	Dilcher et al., Virus Genes 2012 Dec;45(3):426-32
Ngari virus	Bunyaviridae/Ort hobunyavirus	-ssRNA/ 3 Segmente	604 bp von L Segment (partiell) 568 bp von M Segment (partiell) 525 bp von S Segment (partiell)	12.301 bp	Dilcher et al. Virus Genes 2013 Aug;47(1):160-3
llesha virus	Bunyaviridae/ Orthobunyavirus	-ssRNA/ 3 Segmente	581 bp von L Segment (partiell) 4.406 bp von M Segment (komplett) 961 bp von S Segment (partiell)	12.297 bp	dito
Calovo virus	Bunyaviridae/ Orthobunyavirus	-ssRNA/ 3 Segmente	4264 bp von M Segment (partiell)	12.253 bp	dito
Bhanja virus	Bunyaviridae/ Phlebovirus	-ssRNA/ 3 Segmente	-	11.508 bp	Dilcher et al., Virus Genes 2012 Oct;45(2):311-5
Palma virus	Bunyaviridae/ Phlebovirus	-ssRNA/ 3 Segmente	-	11.503 bp	dito
Sandfly Fever Turkey virus	Bunyaviridae/ Phlebovirus	-ssRNA/ 3 Segmente	-	12.603 bp	Carhan et al., Journal of Clinical Virology 2010 Aug;48(4):264-9
Yug Bogdanovac virus	Rhabdoviridae/ Vesiculovirus	-ssRNA/ 1 Segment	108 bp von Polymerase (partiell)	11.202 bp	Pfeffer et al., Virus Genes 2013 Feb;46(1):201-2
Ntaya virus	Flaviviridae/ Flavivirus	+ssRNA/ 1 Segment	1.035 bp von NS5-Gen (partiell) 862 bp von E-Gen (partiell)	10.943 bp	Dilcher et al., Virus Genes 2013 Feb;46(1):162-4


Tribec-Virus (Reoviridae, Orbivirus, dsRNA)

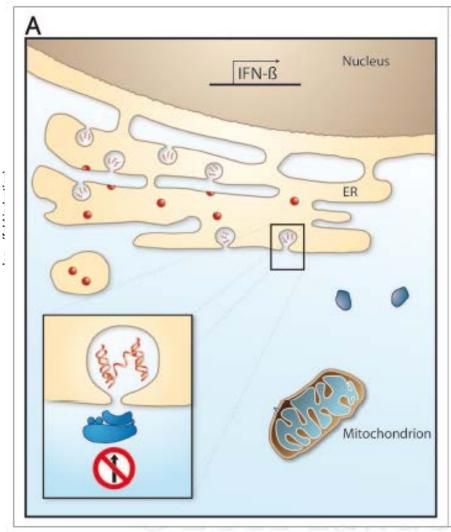
Genome size: 17,87 kb

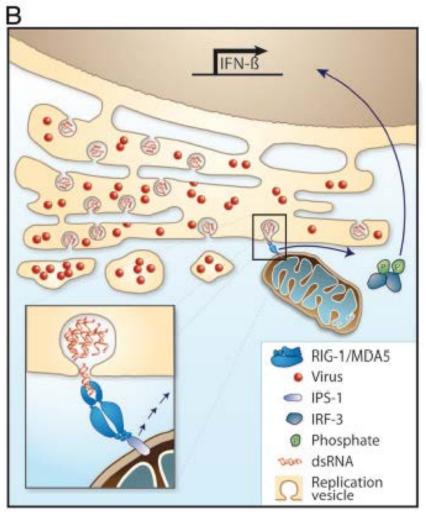


Bhanja / Palma Virus (Bunyaviridae, unassigned)

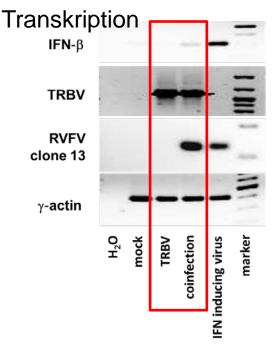


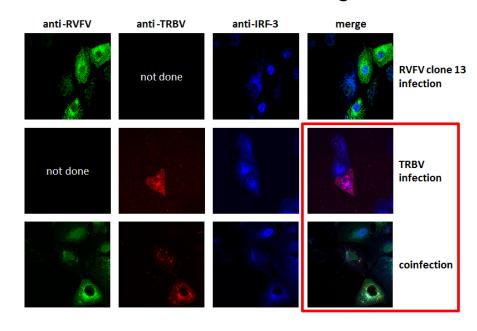
Virus-vermittelte Aktivierung des Typ-I-IFN-Systems

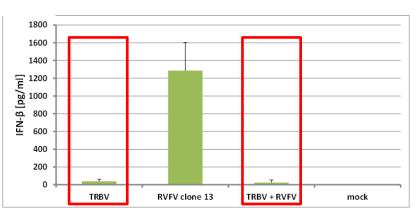

Virus-vermittelte Aktivierung des Typ-I-IFN-Systems



FSMEV und das Typ-I-Interferonsystem

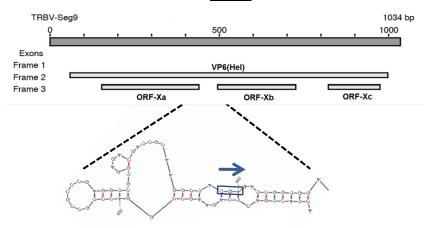


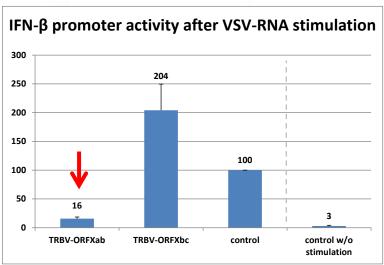

Tribec-Virus interferiert mit der Induktion der angeborenen Immunität

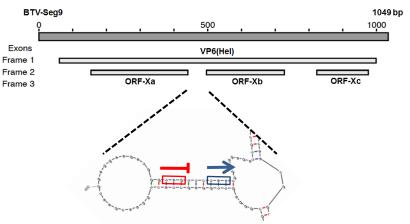

A. Inhibition der Interferon-

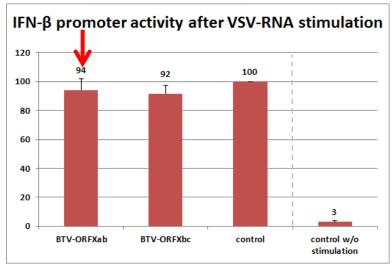
C. Inhibition der IFN-β-Produktion

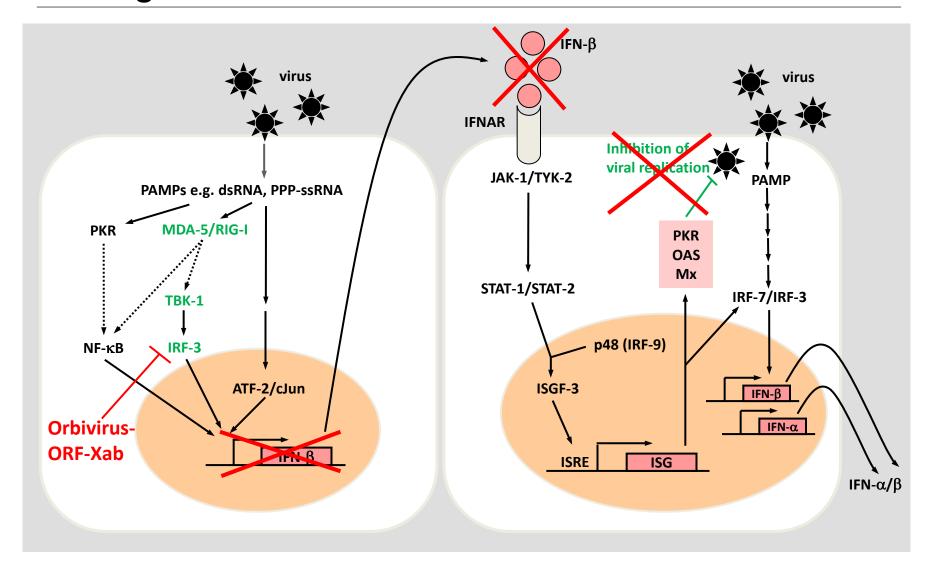
B. Inhibition der IRF-3-Aktivierung






Translationaler *readthrough* – ein neuer Mechanismus zu Blockade des Typ-I-IFN-Systems


Tribec virus, a **tick**-borne

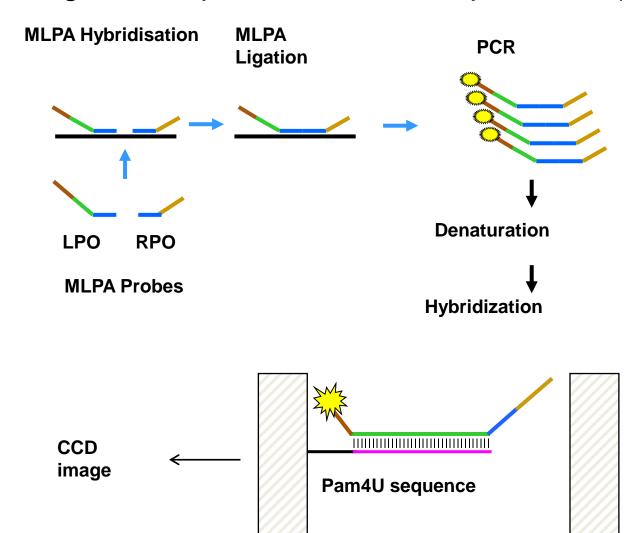

Bluetongue virus, an insect-borne

ORF-Xab-*Readthrough-*Produkte sind orbiviral Pathogenitätsfaktoren

Anwendungsorientierte Projekte

- Diagnostikentwicklungen
- Patientenstudien und Biobank
- Feldstudien

Neue diagnostische Verfahren


- Multiplex Ligation-Dependent Probe Amplification-Assay
- Echtzeit-RT-PCR
- CBA und IFTs zur Serodiagnostik

Molekulare Diagnostik für Europäische Arboviren

Multiplex Ligation-Dependent Probe Amplification (MLPA)

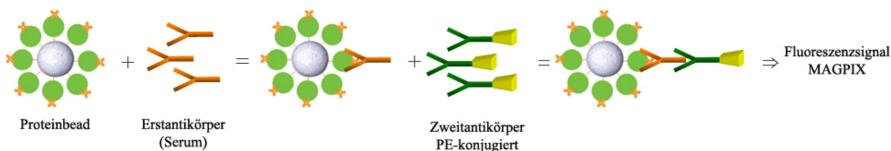
Sensitivität des MLPA-Flowthrough-Microarray für Europäische Arboviren

Table 2 Analytical sensitivities of various assay types during the MLPA-microarray development given as molecules detected

Virus assay	RT-PCR	MLPA	MLPA-microarray
TOSV	10 ¹	10 ¹	10 ¹
SFSV	10^{2}	10 ²	10 ³
SFNV	10^{2}	10 ²	10 ³
TAHV	10^{2}	10 ²	10 ³
INKV	10 ³	10 ¹	10 ¹
BATV	10 ¹	10 ¹	10 ¹
UUKV	10 ¹	10 ¹	10 ¹

Entwickelte Echtzeit-RT-PCR-Verfahren

Erreger	Zielgen	Analytische Sensitivität n=8
Eyach	VP6	10 ²
Tribec	VP7	10 ¹
Erve	N	10 ²
Bhanja	N	10 ¹
Palma	N	10 ²
Uukuniemi	N	10 ³
TBEV	3'NTR	10 ¹
Tahyna	N	10 ²
Batai	N	10 ¹
Inkoo	N	10 ³
West Nile	3'NTR	10 ¹
Sandfly fever Sicilian	N	10 ²
Sandfly fever Naples	N	10 ²
Sandfly fever Turkey	L	10 ¹
Toscana	N	10 ²


CBA für Europäische Arboviren

• <u>Ziel</u>: Serologische Nachweismethode von Antikörpern gegen alle genannten Arboviren

Batai Virus	(BATV)	Palma Virus	(PALV)	Tick-borne encephalitis Virus	s (TBEV)
Bhanja Virus	(BHAV)	Sandfliegen Fieber Virus Naples	(SFNV)	Toscana Virus	(TOSV)
Erve Virus	(ERVEV)	Sandfliegen Fieber Virus Sicilian	(SFSV)	Tribec Virus	(TRBV)
Eyach Virus	(EYAV)	Sandfliegen Fieber Virus Turkish	(SFTV)	Uukuniemi Virus	(UUKV)
nkoo Virus	(INKV)	Tahyna Virus	(TAHV)	West Nile Fieber Virus	(WNV)

- Entwicklung eines Cytometric Bead Array (CBA) als Multiplextest
- Simultaner Nachweis von Antikörpern gegen 15 Europäische Arboviren in Patientenseren [Bunyaviren (N), Flaviviren (NS1) und Oberflächenproteine der Reoviren (VP6 / VP7)]

Austestung von 110 gut charakterisierten Patientenseren aus dem Oberrheintal

Vergleich CBA und IFT

Virus	Antigen	CBA Nachweis- grenze	IFT Nachweis- grenze
Tahyna	N	1:65536	1:640
TBEV	NS1	1:65536	1:1280
Uukuniemi	N	1:32768	1:2560
Bhanja	N	1:8192	1:320
Inkoo	N	1:8192	1:320
Palma	N	1:8192	1:1280
Eyach	VP6	1:8192	1:160
Sandfly Fever Turkey	N	1:2046	1:1280
Sandfly Fever Sicilian	N	1:1024	1:80

Virus	Antigen	CBA Nachweis -grenze	IFT Nachweis- grenze
Erve	N	1:4096	1:2560
West Nile	NS1	1:2048	1:1280
Batai	N	1:2048	1:1280
Tribec	VP7	1:2048	1:1280
Toscana	N	1:128	1:80
Sandfly Fever Naples	N	1:128	1:80

→ Optimale Serumverdünnung zwischen 1:200 und 1:2000 → Optimale Serumverdünnung zwischen 1:50 und 1:250

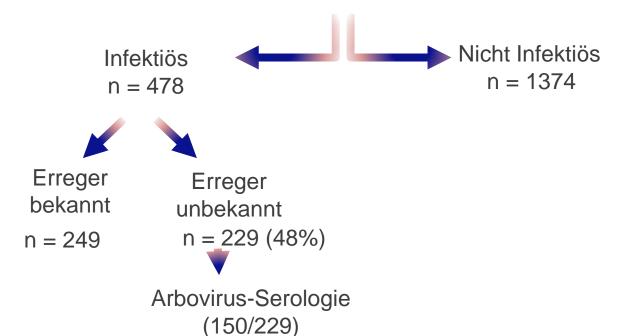
Multiplex-CBA - Kreuzreaktionen

Kreuzreaktionen zwischen Proteinbeads nah verwandter Viren [Austestung: Positivseren]

Beads Serum	BATV- N	BHAV- N	ERVEV -N	EYAV. VP6	INKV-N	PALV-	SFNV-N	SFSV-N	SFTV-N	TAHV- N	TBEV-	TOSV-	TRBV- VP7	UUKV- N	WNV- NS1	E. coli
BATV	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BHAV	-	++	-	-	-	++	-	-	-	-	-	-	-	-	-	-
ERVEV	-	-	++	-	-	-	-	-	-	-	-	-	-	-	-	-
EYAV	-	-	-	++	-	-	-	-	-	-	-	-	-	-	-	-
PALV	-	++	-	-	-	++	-	-	-	-	-	-	-	-	-	-
SFNV	-	-	-	-	-	-	++	-	-	-	-	+	-	-	-	-
SFSV	-	-	-	-	-	-	-	++	++	-	-	-	-	-	-	-
SFTV	-	-	-	-	-	-	-	++	++	-	-	-	-	-	-	-
TAHV	-	-	-	-	++	-	-	-	-	++	-	-	-	-	-	-
TBEV	-	-	-	-	-	-	-	-	-	-	++	-	-	-	+	-
TOSV	-	-	-	-	-	-	++	-	-	-	-	++	-	-	-	-
TRBV	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-
UUKV	-	-	-	-	-	-	-	-	-	-	-	-	-	++	-	-
WNV	-	-	-	-	-	-	-	-	-	-	++	-	-	-	++	-
Neg.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Meningoenzephalitis Biobank (MEB)

Patienten: Proben von Patienten mit V.a. ME (n = 1852)


gesammelt an den Standorten Freiburg/Pforzheim.

Altersverteilung: 3 – 89 J.

Insgesamt 2476 Liquores, 2625 Seren

Diagnose

Ursache neurologische Erkrankung

metabolisch/toxis ch, degenerativ, vaskulär, obstruktiv, autoimmun neoplastisch

Kontrollen:

Beschäftigte des Universitätsklinikums Freiburg: n = 153 Negative Reiseanamnese 2 Jahre vor Untersuchung, Alter: 19 – 67 J.

Epidemiologische Ergebnisse

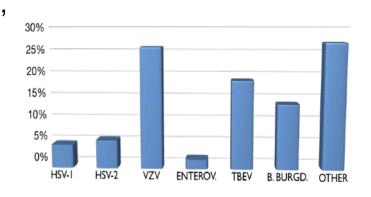
1. Unklare ME:

IgG-Seroprävalenz 12% (18/150), TOSV:

IgM-Seroprävalenz 37% (56/150).

Akute Infektion mit TOSV 8% (12/150)

(pos RT-PCR aus Li u./o. spez.lgM-Ak > 1:40 o.


simultaner Nachweis von spez.lgG plus lgM-Ak > 1:20).

IgG-Seroprävalenz 3,4% TAHV:

3. Gesunde Kontrollen:

- IgG-Seroprävalenz 5,2% (8/153) TOSV:
- IgG-Seroprävalenz 2,9% (4/153) TAHV:
- WNV: IgG-Seroprävalenz 0%
- FSMEV: IgG-Seroprävalenz der > 50j.: 27% (41/153)

2. Häufigkeiten ME bekannter **Ursache**

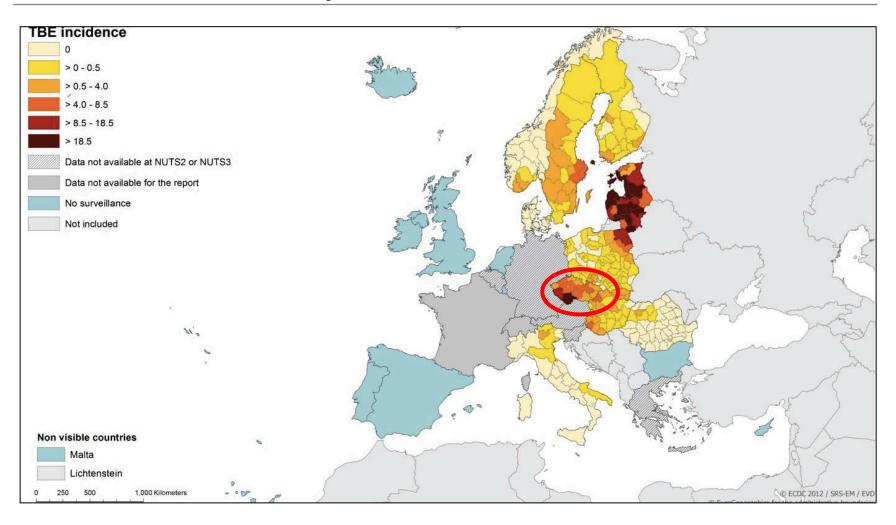
Tocanavirus ist endemisch im Oberheingraben

Multiplex CBA Seren von ME-Patienten

- 110 Seren wurden untersucht [n=3]
- Mehrfachinfektionen denkbar

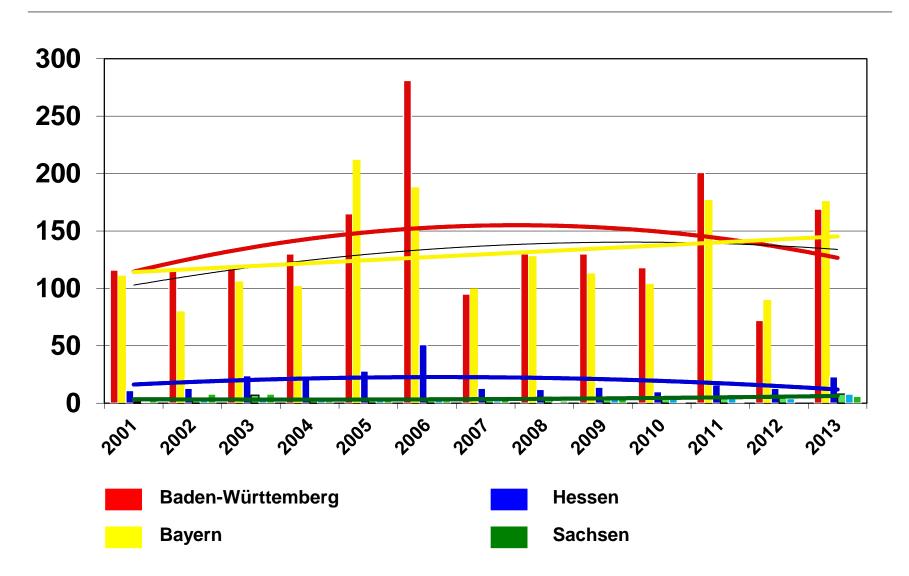
IgG positiv: [40]

Virus	positiv	grenzw. positiv	bestätigt
UUK	3	1	1 (25%)
SFN / TOS	6	1	7 (100%)
SFS / SFTV	7	4	8 (72%)
TAH / INK	6	5	5 (45%)
ERVE	1	0	0 (0%)
TBEV	1	1	2 (100%)
BHA / PAL	4	2	6 (100%)
BAT	0	0	0 (100%)
TRBV	1	2	1 (33%)
EYACH	12	4	16 (100%)
WNV	0	0	0 (100%)


IgM positiv: [21]

positiv	grenzw. positiv	bestätigt %	
1	1	n.d.	
2	2	n.d.	
2	1	n.d.	
10	1	n.d.	
0	0	n.d.	
0	0	n.d.	
0	3	n.d.	
1	1	n.d.	
5	4	n.d.	
0	0	n.d.	
1	1	n.d.	
	positiv 1 2 2 10 0 0 1 5 0	positiv grenzw. positiv 1 1 2 2 2 1 10 1 0 0 0 0 0 3 1 1 5 4 0 0	

FSMEV in Europa



INIVERSITÄTSMEDIZIN **UMG**

Jährliche Erkrankungszahlen in vier deutschen Bundesländern

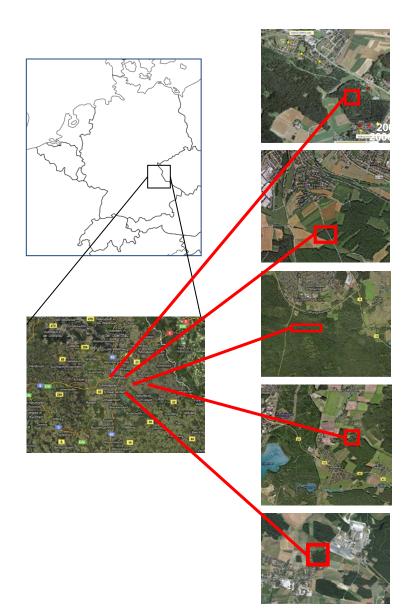
(SurvStat, RKI, 2014)

Feldstudien

- Analyse der FSMEV-Durchseuchung der Zeckenpopulation in Naturherden.
- Untersuchung der der genetischen Verwandtschaft von FSMEV-Isolaten zwischen den Naturherden über die Zeit (Isolate von 1953 bis 2011, CZ, SL, AU, DE, 38 Orte).
- Analyse der Virusgenetik aus Zeckenisolaten in einem Fokus über 4 Jahre.
- Korrelation der Zeckenpopulationen und Herdaktivität mit exogenen Faktoren.
- Analyse der Prävalenz in Wildtieren.

Naturherdanalysen

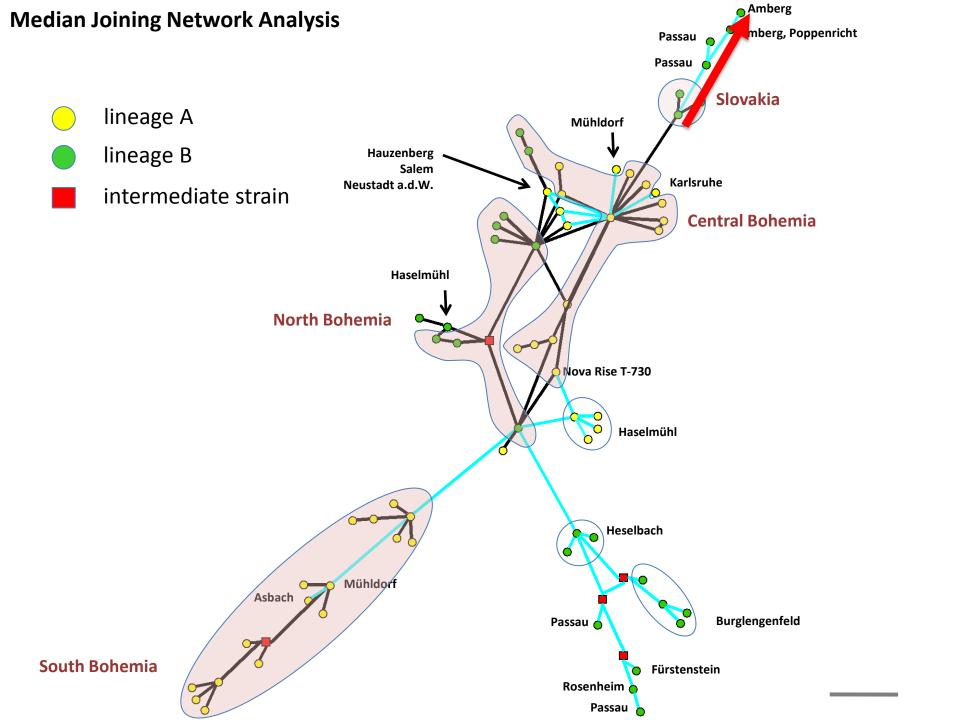
 26.143 Zecken aus 27 Naturherden untersucht.


4747 Pools auf Virus analysiert, davon 48 positive Zeckenpools.

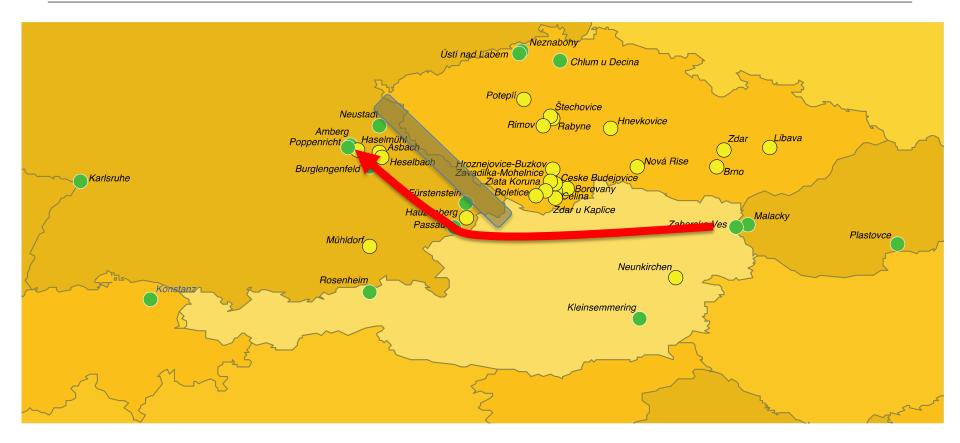
 Durchseuchungsdicht im Herd lag bei 0-4%, Durchschnitt 0,5%.

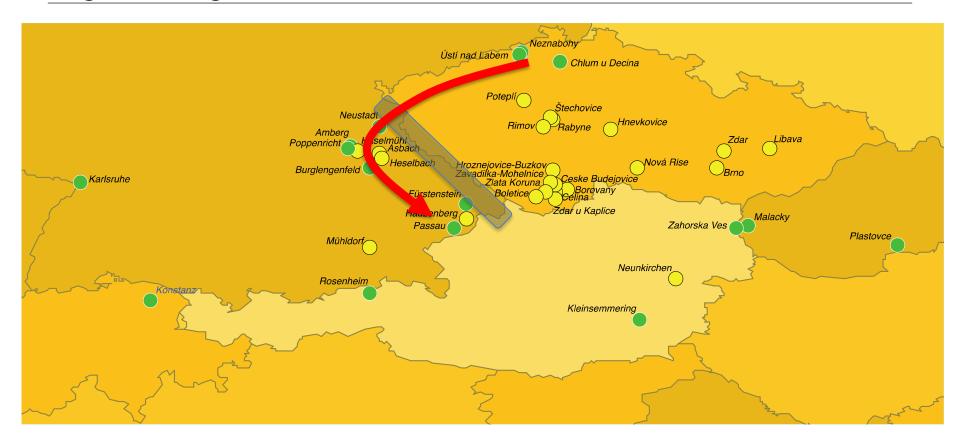
Mikrostruktur von FSME-Naturherden in Ostbayern

- FSME-Herde umfassen jeweils nur Fläche von ca 10.000 m²
- Biodiversitäts- und ökologische Studien einfach möglich
- Verstehen der Komponenten des Naturherd-Zyklus
- Möglichkeit der Intervention und Eradikation von Naturherden



FSMEV-Genetik in Naturherden


- >100 FSMEV-E-Gen-Sequenzen wurden untersucht.
- Zehn FSMEV-Herde mit fokaler Diversität wurden identifiziert.
- Die Bayessche Analyse zeigt eine Evolutionsgeschichte seit 350 Jahren mit einer Aufteilung in zwei Linien (Clade A u. B)
- Beide Linien verbreiteten sich westwärts unter Umgehung des Bayrischen Waldes möglicherweise über das Donautal.

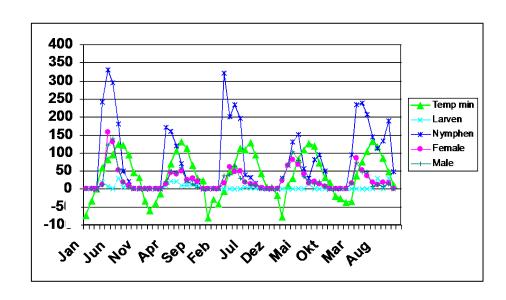

Mögliche Migrationsroute clade A-Stamm nach Amberg

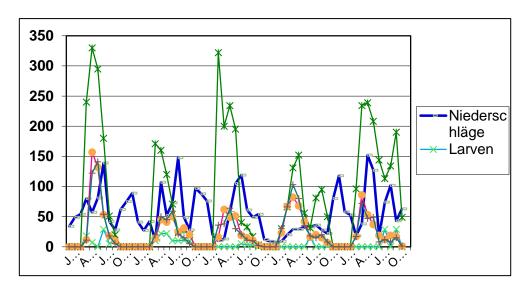
Passau 🍗

Mögliche Migrationsroute clade B-Stamm nach Haselmühl

27 positions with nt exchanges/aa-exchanges in 7 different genes with (fields in green)

Master Sequence: HM_467/09


		HM_148/1									_
Nt position	_	0	HM_153/10	HM_17/11	HM_91/11	HM_305/11	HM_329/11	HM_166/12		HM_570/12	
55									Х		5´-NCR
284									Х		C-protein
441									Х		
937	X	Y	Х	Х	Х	Х		X	X	Х	preM
1494		Х			Х	X				Х	E-protein
1569								Х			
1986									Х		
2295										Х	
2767		Χ									Ns1
2767									Χ		
2787									Х		
3669					Х	Х					Ns2a
4011	Х	V	Х		Х	Х		Х	X	Х	
4059					Х						
4061				Х							
4209		Х			Х	Х				Х	Ns2b
5614				Х							Ns3
6519		Х			Х	Х				Х	Ns4a
6998				Х							Ns4b
7209				Х							
8703						X					Ns5
9396								Х			
10122		Х			Х	Х				Х	
10154		Х	Х		Х	Х		Χ		Y	
10281	Х	Х	Х	У	Х	X			X	Х	
10682			Х								3´-NCR
10848									Х		



Naturfocus und exogene Faktoren

- Keine Korrelation von Wetterfaktoren mit Zeckenpopulation und Virusaktivität in einem Naturfocus
- Keine Korrelation von menschlicher Erkrankung und Dynamik im Naturfocus
- Anthropogene Faktoren sind für das Auftreten von Erkrankungen verantwortlich

FSMEV in Wildnagern

TABLE 3. ANALYSIS OF TICK-BORNE ENCEPHALITIS VIRUS INFECTION RATE IN DIFFERENT RODENT SPECIES

Species	No. of samples found positive for TBEV ^a /total no. of samples (%)
Apodemus agrarius	3/24 (13)
(striped field mouse)	
Apodemus flavicollis	10/123 (8)
(yellow-necked mouse)	
Apodemus sylvaticus (long-tailed	2/7 (29)
field mouse, wood mouse)	
Microtus agrestis (field vole)	7/101 (7)
Microtus arvalis (common vole)	2/21 (10)
Mus musculus (house mouse)	0/2 (0)
Myodes glareolus (bank vole)	21/163 (13)
Total	45/441 (10)

^aAt least brain or spleen tissue found to be positive in the TBEV RT-qPCR.

Table 2. Analysis of Brain and Spleen Samples from Wild-Living Rodents Tested for Tick-Borne Encephalitis Virus RNA by Real-Time (RT)— Quantitative Polymerase Chain Reaction

	Position on map (Fig. 1), district, federal state	No. of samples found positive for TBEV ^a / total no. of samples (%)
TBE nonrisk areas	(2) Ostprignitz-Ruppin, BB	1/5 (20) 4/60 (7)
	(3) Barnim, BB	10/98 (10)
	(4) Potsdam-Mittelmark, BB	4/69 (6)
	(5) Oder-Spree, BB	1/29 (3)
	(6) Oberspreewald-Lausitz, BB	0/3 (0)
	(7) Börde, SA	2/19 (11)
	(8) Anhalt-Bitterfeld, SA	2/11 (18)
	(9) Cologne, NRW	0/10 (0)
	Total	24/304 (8)
TBE risk areas	(10) Darmstadt-Dieburg, HE (11) Bergstraße, HE (12) Odenwaldkreis, HE	4/38 (11) 16/79 (20) 1/20 (5)
	Total	21/137 (15)

^aAt least brain or spleen tissue found to be positive in the TBEV RT-qPCR.

MWP, Mecklenburg-Western Pomerania; BB, Brandenburg; SA, Saxony-Anhalt; NRW, North Rhine Westphalia; HE, Hesse; RT-qPCR, real-time quantitative polymerase chain reaction.

FSMEV in experimentell infizierten M. arvalis

1. Analysis of Different Organs of *Microtus arvalis* Voles Experimentally Infection-Borne Encephalitis Virus Over a Period of 3 Months Postinfection by Tick-Borne Encephalitis Virus—Specific Real Time (RT)—Quantitative Polymerase Chain Reaction

No. of samples found positive for TBEV/total no. of samples tested (mean copy no. of samples tested positive/mg organ or mL blood)

5 dpi	20 dpi	50 dpi	100 dpi
$1/2 (6 \times 10^{2})$	0/3 (0)	$1/3 (8 \times 10^2)$	0/3 (0)
$1/2 (3 \times 10^{6})^{b}$	$1/3 (9 \times 10^4)$	$2/3 (2 \times 10^2)$	$2/3 (4 \times 10^{1})^{b}$
0/2 (0)	$1/3 (3 \times 10^1)$	$1/3 (8 \times 10^1)$	$2/3 (7 \times 10^{1})$
$1/2 (7 \times 10^{1})$	$2/3 (6 \times 10^1)$	$1/3 (2 \times 10^2)$	$3/3 (6 \times 10^{2})^{b}$
$1/2 (4 \times 10^{0})$	$1/3 (5 \times 10^1)$	$1/3 (1 \times 10^2)$	$2/3 (5 \times 10^{2})$
0/2 (0)	0/3 (0)	$2/3 (6 \times 10^1)$	$3/3 (1 \times 10^{2})$

alyzed in duplicate.

V was performed by incubating the homogenized organ (tested positive for TBEV by RT-qPCR) on V fection; no., number; nd, not done; RT-qPCR, real-time quantitative polymerase chain reaction;

Zusamenfassung Grundlagenprojekte

- Für FSMEV und TRBV konnten neue virale Mechanismen zur Abwehr zellulärer antiviraler Strategien (IFN-System) entdeckt werden.
 - FSMEV: Reorganisation des ER
 - TRBV: Interferonantagonisten durch Readthrough

Zusammenfassung anwendungsorientierte Projekte

Diagnostika-Entwicklung:

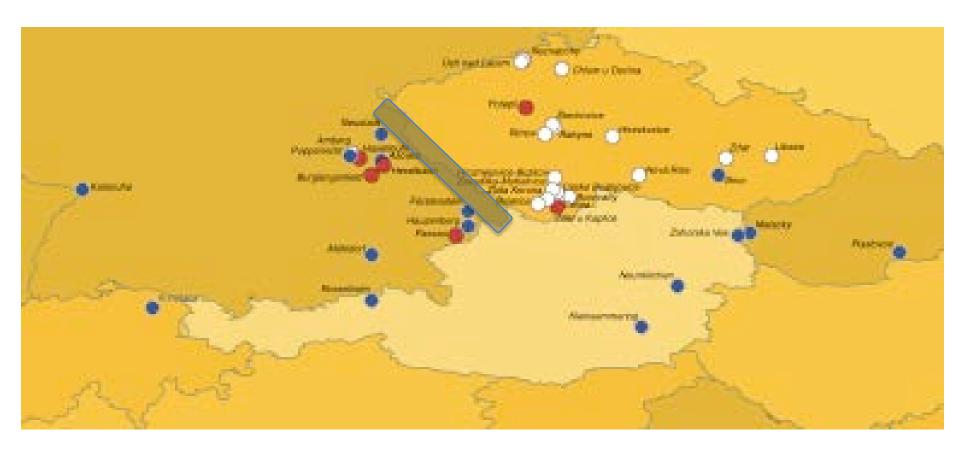
- Virusdirektnachweis: 15 Echtzeit-PCR-Verfahren, 7 MLPA-Verfahren.
- Serologische Dianostik: Entwicklung von IFT und eines Cytometric-Bead-Arrays auf Basis 15 rekombinanter Proteine für die simultane Serodiagnostik.

Pateientenstudie/ Biobank:

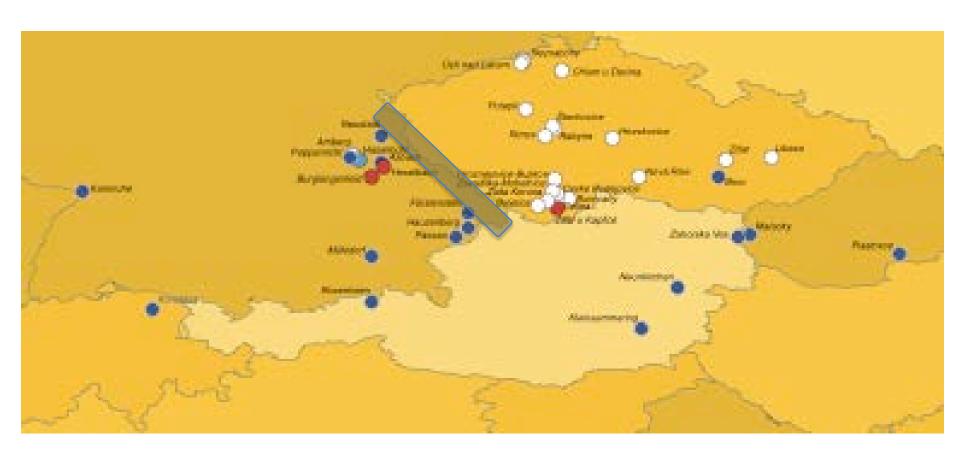
Nachweis autochthoner TOSV-Infektionen im Oberrheingraben.
 Acht Prozent der Fälle mit klinischen Diagnose Vd. virale ME durch TOSV verursacht.

Feldstudien:

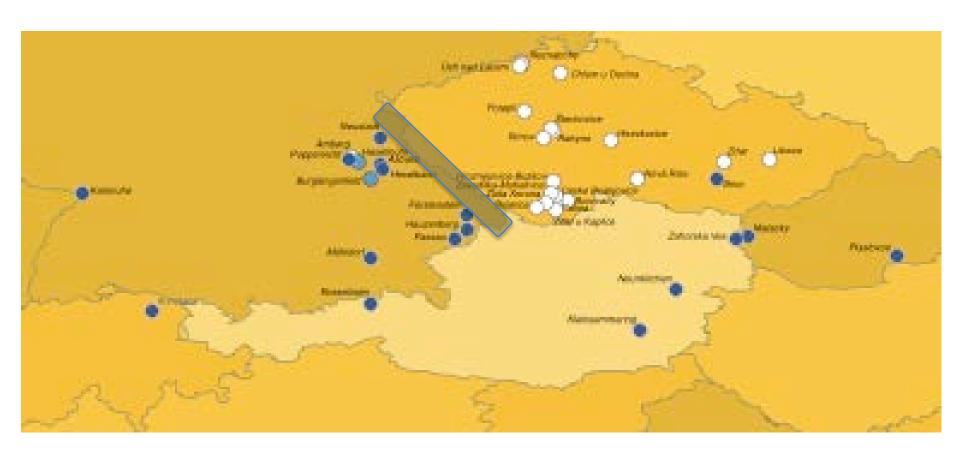
- FSMEV hat eine 350 j\u00e4hrige Evolutionsgeschichte in Zentraleuropa und verbreitet sich entlang der Flusst\u00e4ler
- Durchseuchung der Zeckenpopulation in Naturherden 0-4% (0,5%).
- Durchseuchung in Nagerpopulationen beträgt bis 15%.
- Die FSMEV-Naturherde sind sehr kleine Areale mit fokaler Evolution (Pathogenität?).
- Kein Einfluss von Wetterfaktoren auf die Zeckenpopulation oder Virusaktivität in einem Herd.
- Kein Nachweis von West-Nil-Virus in Deutschland.


Ausblick

- Charakterisierung von Pathogenesefaktoren der europ. Arboviren / Pathogenitäts-Shift?
- Epidemiologie, (veterinär)medizinische Bedeutung und Risikoanalyse der europäischen Arboviren.
 Aufbau von Überwachungssystemen.
- Implementierung einer Flächendeckenden Diagnostik in Endemiegebieten.
- Kartierung der Naturherde in Hochendemiegebieten
- Untersuchung Ökologische Faktoren in den Naturherden als Basis für Eradikationsstrategien.


TBEV E foci sequence diversity at six sites

Low focal TBEV E sequence diversity



Extended dataset of TBEV E sequences

NIVERSITÄTSMEDIZIN UMG

Bayesian analysis: Method

- 1488 character alignment (including gaps) of the sequences of 106 (61 + 45) envelope genes (year of isolation and sampling coordinates available)
- maximum-likelihood optimization using the general time reversible (GTR) model of nucleotide substitution was used and topology, branch lengths, rate heterogeneity and model parameters were optimized.
- A MCC tree with dated tips and internal nodes was inferred using a MCMC Bayesian approach using a relaxed (uncorrelated lognormal) molecular clock
- The GTR+C+I substitution model was used
- Four independent MCMC runs of four chains each were run for 1006106 states.
- Convergence of parameters during MCMC runs was assessed

Spatial distribution of clade A and clade B

Clade A

Clade B